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The central mission of all cells — to survive and reproduce — is a product of the
relentless operation of natural selection. For unicellular organisms, the matter of
cellular reproduction naturally also brings us into contact with the issue of cellular
growth. Typically, cells reproduce by binary fission, although there are cases in
which offspring and adult cell sizes differ by more than two-fold, e.g., budding in
some yeast, and multiple internal fissions in some algae. The essential issue is
that continuous proliferation of a population requires the growth of individual cells.
Growth, in turn, requires the intake and conversion of nutrients to biomolecules.

Here, we focus on the general challenges that exist for any growth mechanism,
leaving the molecular details on resource uptake and cell division to subsequent
chapters (10 and 18, respectively). First, cell growth requires coordination between
the intake of resources and their conversion into cellular material, mostly proteins,
nucleic acids, and lipids. Even the simplest of cells consist of thousands of types
of molecules, so the overall process is enormously complex. The question here is
whether the degree to which the basic process of cell growth can be understood in
general terms using models incorporating a minimum level of molecular complexity.

Second, in relating growth in cellular biomass to the matter of cell division, the
primary question is how a cell decides when to multiply. In principle, cells might
simply divide after a critical time period has passed, although this would require
slowing the clock down in nutrient-poor environments. Alternatively, division might
be delayed until a critical cell size, possibly environmentally determined, is reached.
Still another possibility is that the license to divide is based on the attainment of
a specific growth increment, in which case the size at division would be defined
by the prior size at birth. Regardless of the target criterion, cells must generally
possess compensatory mechanisms to prevent runaway growth or diminution in size
in extreme individuals.

Third, cell division is not a perfect process. There is always some size variation
among the sister cells resulting from binary fission, and this inevitably leads to
variance in the partitioning of the parental-cell contents. Resulting entirely from
the limits to the perfection of cell-division mechanisms, such variation generates
phenotypic variation even in otherwise genetically uniform populations, and at a
level much higher than observed in multicellular species. Some have argued that the
production of phenotypic variation has been promoted by natural selection as a bet-
hedging strategy to cope with heterogeneous environments. However, as discussed
below, nongenetic sources of phenotypic variation reduce the efficiency of natural
selection and impose long-term fitness loads, leaving many open questions on this



2 CHAPTER 9

matter.
Ribosomes and Cell Growth

Before considering the more quantitative aspects of growth, an overview of some
relevant issues regarding the molecular machine dedicated to protein production
is in order. Cells make enormous investments in ribosomes, with up to 50% of
all transcription being devoted to the production of ribosomal RNA (the catalytic
heart of the ribosome) and up to 50% of messenger RNA production allocated to the
production of ribosomal proteins (Warner et al. 2001). Given that each ribosome can
process only one mRNA at a time, and that ribosomes are energetically expensive to
produce, one might expect a strong regulatory associations between cellular growth
rates and the number of ribosomes per cell. Overly low numbers of ribosomes
relative to the cellular supply of nutrients would compromise the rate of production
of cellular biomass. However, excess investment in ribosomes would divert energy
from other cellular processes essential to resource acquisition. This simple argument
suggests that there should be some sort of developmental scaling between the number
of ribosomes per cell and the cellular growth rate (Foundations 9.1).

Consistent with this expectation, for all species in which the issue has been
addressed, there is a strong and essentially linear relationship between cell growth
rate and the mass ratio of total RNA to total protein in the cell (Figure 9.1A). In
other words, there is a predictable shift in the molecular contents of cells as they
are exposed to more nutrient-enriched environments. Generally, the RNA /protein
ratio is in the range of 0.1 to 0.2 at low growth rates, and then increases to ~0.5
or even more in the fastest growing cells. These types of responses are retained
even when the growth-rate differences are created by varying the types of substrates
(as opposed to altering the concentration of a single limiting nutrient) (Schaechter
et al. 1958; Fraenkel and Neidhardt 1961). Thus, the level of RNA production is
driven by an indirect regulatory connection with the growth rate itself, rather than
by direct resource-specific signals.

Although the patterns illustrated in Figure 9.1A refer to the total RNA in a cell,
additional data suggest a coordinated response for mRNAs, tRNAs, and rRNAs,
such that the number of ribosomes per cell also scales directly with the cellular
growth rate. For most species that have been examined, the ratio of rRNA to total
RNA in cells falls in the range of 0.55 to 0.88, typically not deviating by more than
0.15 between different growth rates (Figure 9.1B). Thus, with increasing nutrient
availability, the number of ribosomes per cell increases in a coordinated way with
the growth rate.

Such proportionality appears to arise from various feedback mechanisms. Ribo-
some biogenesis is often controlled indirectly by the level of free rRNA in the cell,
the production of which is in turn regulated via the amount of uncharged tRNAs
(Liu et al. 2015). In E. coli, for example, an alarmone (ppGpp) is produced when
uncharged tRNAs accumulate in the face of an inadequate supply of amino acids,
and this suppresses rRNA production (Potrykus et al. 2011). When ribosomal pro-
teins are in excess in the cell relative to the rRNAs to which they must bind, the
former bind to their own mRNAs, thereby repressing their own production. In con-
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trast, in the soil bacterium Bacillus subtilis, inhibition of rRNA production results
from a drop in cellular GTP levels (a result of enhanced incorporation of GTP into
ppGpp) (Krasny and Gourse 2004). A variety of other mechanisms exist in eukary-
otes (Warner et al. 2001; Parenteau et al. 2019). Such regulatory flexibility of a
highly conserved function will be encountered for a number of other cellular traits
in the following pages.

A relatively simple theoretical argument potentially explains the linear response
of investment in ribosomes with increasing growth rate (Foundations 9.1). Assuming
that all but a small fixed fraction of ribosomes is actively engaged in translation
and that active ribosomes are generally saturated with mRNAs, the overall growth
rate can only be enhanced by increasing the translation rate per ribosome and/or
the number of ribosomes. For species with available data, translation rates per
ribosome generally change by no more than a factor of two over a scale in which
the cell growth rate varies much more (Figure 9.1C). Thus, elevated investment in
ribosomes appears to be the dominant factor.

Under this view, a plot of the mass ratio of ribosomal protein to total protein
against the cell growth rate (Equation 9.1.3) has a specific biological meaning — the
y intercept is a measure of the investment in inactive ribosomes relative to the total
pool of proteins, and the inverse of the slope is a measure of the rate of protein
mass produced per mass of ribosomal protein. Figure 9.1A provides such a plot for
E. coli, except that the y-axis values need to be multiplied by 0.53 to convert to
the ribosomal protein ratio for this species (Scott et al. 2010). Although E. coli
will be used as an exemplar in the following analyses, this species has a distinctly
lower intercept and slope for the response plot than in other species, meaning that
E. coli achieves a maximum growth rate with a relatively low investment in RNA
(and presumably ribosomes).

The total investment in ribosomal proteins in F. coli can be obtained by mul-
tiplying the total RNA /total protein mass ratio by the average rRNA /total RNA
ratio of 0.62 from Dennis and Bremer (1974), and then by the ratio of ribosomal
protein to rRNA mass of 0.53. From Figure 9.1A, this leads to the conclusion that
~ 3% of the protein in a nongrowing FE. coli cell is associated with ribosomes. This
is in reasonable agreement with a more direct estimate of ~ 8% associated with non-
translating ribosomes in budding yeast, regardless of the growth rate (Metzl-Raz et
al. 2017). Although ribosomes are expensive to produce, a non-zero reserve at near-
zero growth rate is not too surprising, as complete ribosome loss is a death sentence.
Although little work has been done on the matter, in E. coli and likely other bac-
teria, ribosomes dimerize and become translationally quiescent under nutritionally
starved states (Vila-Sanjurjo 2008; Yoshida and Wada 2014).

The fractional investment in ribosomal proteins increases to 28% for cells grow-
ing at maximum rate, and Scott et al. (2010) estimate that when the total amount of
accessory proteins associated with translation is added in, these numbers need to be
multiplied by ~ 1.7 to determine the total investment in translation. Thus, a rapidly
growing E. coli cell devotes nearly 50% of its protein to translation. Although the
data are less extensive, because eukaryotes have both higher total RNA /total pro-
tein and rRNA /total RNA mass ratios than bacteria (Figure 9.1A B), as well as
higher numbers of ribosomal proteins per ribosome (Chapter 6), to achieve equiv-
alent growth rates eukaryotic cells must make an even larger fractional investment
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in ribosome production.

The results in Figure 9.1 can also be used to estimate the absolute upper bound
on the growth rate, by considering the division time of a hypothetical cell consisting
entirely of ribosomes. The inverse of the slope in Figure 9.1A implies a rate of
protein mass produced per unit ribosome mass per hour of 7.5, indicating that a
healthy E. coli ribosome can replace its own protein constituents in about 60/7.5 = 8
minutes. The upper limit to the growth rate can also be calculated more directly by
simply considering the number of amino acids per ribosome and the upper bound
to the rate of translation (again, assuming that the cell consists of nothing but
actively engaged ribosomes). The full set of bacterial ribosomal proteins comprises
~ 7,500 amino acids, and the upper bound to the translation rate is ~ 20 amino
acids/ribosome/second (Figure 9.1C). If one then liberally assumes that an extended
ribosome (the complete translational machinery) contains twice as many amino acids
as the ribosome itself, then the rate of addition of amino acids to elongated chains
(protein biomass production) per amino-acid residue in the translational apparatus
is 20/(2 - 7500) = 0.0013/second, or 4.8 /hour.

Thus, without an increase in the rate of translation or a decrease in the size
of an extended ribosome, the cell-division time in an FE. coli-like bacterium cannot
be reduced below ~ 12.5 minutes, indicating that the massive cost of the ribosome
itself imposes a significant limit on the rate of cell division. Under optimal growth
conditions, many bacteria have doubling times on the order of 20 minutes (Chapter
8), and so are quite close to this ultimate limit.

Models for Cellular Growth

Natural selection promotes phenotypes that maximize the rate of entry of progeny
into the subsequent generation, which requires both reproduction and survival.
Here, we consider the issues in a very general sense, with an initial focus on simple
expressions for the response of cell-division rates to the concentration of a limiting
nutrient, e.g., glucose for a laboratory-grown bacterium, or phosphorus for a plank-
tonic alga. This will then be followed by an exploration of how cell size and division
time are set and interrelated.

As discussed below, even in a constant environment, substantial variation typi-
cally exists in the division times of individual cells, owing to internal stochastic pro-
cesses. Nonetheless, an ensemble of cells can be described by the average population-
level rate of increase r. Letting Ny and N; denote population sizes at two points in
time, then assuming constant conditions,

N; = Nye™t (9.1)

describes the trajectory of numbers of individuals over this period (Foundations
9.1). Defined in this way, r is a measure of the per-capita exponential growth rate
(with units of time~!). Taking logarithms and rearranging,
_ In Ny —In Ny
T = f
The doubling time for population size, obtained by setting N;/Ny = 2, is

tq =1In(2)/r. (9.3)

(9.2)
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Like interest in a bank account, the doubling time of ~ 0.693/r is less than expected
under linear growth.

The preceding expressions apply to the special situation in which a population is
expanding in a nutritionally constant environment, but of course, no population can
grow exponentially for an indefinite period of time. In more general applications in
population biology, r is usually used to describe the actual rate of population growth,
which reflects the net difference between birth and death rates. Here, however, the
focus is primarily on laboratory cultures, where there is typically very little cell
death. In that case, r can be viewed as the rate of cell birth, which with a constant
steady-state distribution of cell sizes at division, is equivalent to the exponential
rate of increase in cellular biomass (Jun et al. 2018). In a laboratory culture where
cells are being regularly drawn off (as in a chemostat; Figure 8.3), the birth rate
can be kept indefinitely at a high level, and it is in this sense that the following
descriptions portray the physiological aspects of cellular growth.

From observations on bacteria grown under constant conditions, Monod (1949)
concluded that the growth-rate response to nutrient concentration (S) can be de-
scribed by a simple hyperbolic function,

S
T = Tmax (Kr ¥ S) ) (94&)

where 7y, is the maximum rate of growth (asymptotically approached as S — o0),
and K, is the half-saturation constant for growth (equivalent to the resource con-
centration at which r = 7., /2). As will be discussed in Chapter 18, this formula is
identical in form to the commonly employed Michaelis-Menten equation for nutrient
uptake and other enzymatic reactions,

S
U = Umax <W) ) (94b)

where K, is the half-saturation constant for uptake, which is not necessarily equal
to K.

Numerous other models have been suggested for linking growth rate to nutrient
availability. For example, with a focus on algal cells in continuous culture, Droop
(1973, 1974) considered a construct in which the growth rate depends on the internal
cellular concentration of the limiting nutrient (Q, commonly referred to as the cell

quota),
T = Tmax (1 — g) . (9.5)

Under this model, cell division ceases when @ drops below the critical internal con-
centration ¢, and r asymptotically approaches the maximum possible value ry., as
the internal nutritional state @ increases. An attractive feature of this expression
is that cell growth is more naturally connected with internal than external nutrient
pools. While internal nutrient pools are not necessarily easy to estimate, measures
of r and @ in nutrient-limited cultures of single species of phytoplankton have re-
peatedly supported the general form of Equation 9.5 (Figure 9.2).

Despite its different functional underpinnings, the structure of Equation 9.5 is
entirely compatible with the Monod growth equation. This can be seen by noting



6 CHAPTER 9

that for a system in steady-state, the rate of nutrient uptake must equal the product
of the cell quota and the rate of cell growth, i.e., v = r-Q, which implies a cell quota
Q = u/r defined by the ratio of rates of uptake and growth. Substituting this
expression into Equation 9.5 and rearranging yields

u
" e ((Trrlax¢) + u) 7 (96)

which again has the form of a hyperbolic relationship, in this case between r and
the rate of nutrient uptake. If Equation 9.4b is substituted for u here, a more
complex expression is obtained in terms of S and the uptake parameters, but this
is still hyperbolic with respect to the external nutrient concentration S, recovering
the form of Equation 9.4a.

Equations 9.4a and 9.5 have been used to describe thousands of growth re-
sponses, and are often referred to as growth laws. However, the models are phe-
nomenological in the sense that they do not explicitly describe any of the underlying
mechanisms connecting substrate uptake, utilization, and growth. They simply de-
scribe general growth responses to nutrient limitation with a minimum amount of
detail. More complex models have been proposed. For example, Maitra and Dill
(2015) and Weife et al. (2015) presented formulations that include ribosomes, other
RNAs, protein, and ATP as the underlying variables, in both cases generating pre-
dictions that are consistent with the Monod-growth model and ribosome-growth
coupling noted above. Models with an intermediate level of complexity, describing
Tmax and K, in mechanistic terms associated with the translational capacity of ribo-
somes and the nutritional capacity of the environment are outlined in Foundations
9.2. These provide a satisfying explanation for the response to ribosome investment
to increased nutrient availability noted in the preceding section.

Control of Cell Size at Maturity

As discussed in the previous chapter, the cell volumes of unicellular species vary by
approximately eleven orders of magnitude (Figure 8.1). Within-species deviations
exist as a consequence of prevailing environmental conditions, stochastic variation
in cell volume arising during division, and position in the cell-division cycle (age
variation). Nonetheless, under any particular environmental setting, the range of
cell sizes within a species is generally fairly narrow, with standard deviations well
below the mean. This implies the existence of homeostatic mechanisms for cell-size
regulation.

Under constant conditions, the average rate of increase in cell size (per unit
biomass) between divisions must equal the average rate of cell division. If this were
not the case, cell size would become progressively smaller or larger. In other words,
at steady state, cells must double in size at the same rate as the population doubles
in cell number. This, however, leaves open the possibility of a diversity of patterns
of biomass growth within the life span of a cell. Resolving this issue is critical to
understanding how cell size and division time are jointly determined.

As outlined above, the numbers of cells within populations kept at constant con-
ditions increase exponentially in time (as in a chemostat, where cellular production
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is continuously offset by removal), and this suggests that the volumes of individual
cells might grow in a parallel manner. If so, under steady-state conditions, cell
volume would grow in accordance with Equation 9.1,

V, = Vpe', (9.7)

where Vj is the size of a newborn cell, and V; is its size ¢t time units later. Under
this model, the proportional rate of change in cell volume is independent of cell size,
although larger cells grow more rapidly in an absolute sense.

Exponential growth specifically implies that the metabolic features of growing
cells remain constant, independent of size, such that the ensemble of constituent
molecules operates via a fixed set of reaction rates per unit cytoplasmic volume.
However, exponential growth in cell size is not essential for balanced growth. The
only requirement is that cumulative cellular biomass increases by a factor of two from
birth to death. In principle, growth might be linear, with the rate of acquisition of
biomass being independent of cell size, or sigmoidal, with the rate of growth initially
accelerating and then decelerating as a critical size is approached.

Numerous observations on the growth of individual cells support the exponential
cell-growth model (or something very close to it) for bacterial species (Voorn and
Koppes 1998; Santi et al. 2013; Iyer-Biswas et al. 2014; Osella et al. 2014; Campos
et al. 2014; Susman et al. 2018), with no known striking exceptions. In addition, the
model extends to eukaryotes. Godin et al. (2010) and Bryan et al. (2010) observed
exponential growth not only in the bacteria E. coli and B. subtilis, but also in the
yeast S. cerevisiae and mouse lymphoblast cells, and similar observations have been
made on human osteosarcoma cells (Mir et al. 2011) and in the ciliate Paramecium
tetraurelia (Kimball et al. 1959). In all of these cases, the larger the cell, the higher
the absolute growth rate.

In terms of cell-size homeostasis, however, there remains a problem. Owing to
stochasticities arising during division, not all cells have exactly the same size at
birth. What then regulates the sizes of consecutive cells produced within a lineage
to prevent overly small/large cells from spawning ever more extreme descendants?
If cells might simply grew exponentially for a specified time before division — a timer
model, cells that were larger at birth would grow more over the specified duration,
leading to a potentially runaway size distribution (Figure 9.3). Under an alternative
sizer model, cells might be programmed to divide once a critical volume is reached.

For the best-studied organism, FE. coli, both of these models come up short.
Instead, for a given environment, cells appear to add an approximately constant
volume (A) prior to division (Taheri-Araghi et al. 2015) (Figure 9.4). This adder
model leads to a simple mechanism of cell-size homeostasis, with the steady-state
expected offspring size being equal to A. Contrary to the sizer model, the adder
model predicts that larger newborn cells will divide at larger sizes (with expectation
Vo + A), in effect being oblivious to their current size; only A remains independent
of size. If a newborn cell is larger than A, say by an amount v, then cell division
will occur at expected size (v + A) + A = v + 2A, and the expected offspring size
will be half that, (v/2) + A, and hence shifted back towards the long-term expected
value A by an amount v/2. The opposite (a shift towards larger offspring size)
occurs if an offspring cell happens to be slightly smaller than A. In both cases,
the deviations from the expected newborn size decline over time, insuring rapid
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convergence back to A. These arguments ignore new deviations that arise at each
subsequent division, and the data suggest that the damping process is less smooth
than this simple description implies (Tanouchi et al. 2015), with individual cells
having unique response behaviors, presumably reflecting idiosyncratic stochasticies
(Susman et al. 2018).

Notably, a pure adder model is not required for cell-size homeostasis. Consider
the situation in which there is some memory of parental cell-size (V,) such that the
predicted offspring size is Vj = aV), + A. Setting V; = V), yields an equilibrium cell
size of A/(1 — «), which implies homeostasis provided —1 < a < 1. If o < —1, cell-
size declines to zero, and « > 1 leads to runaway cell growth, and within the range
compatible with homeostasis, positive « leads to faster convergence than negative
.

This more general model accommodates a wide range of species. Like E. coli,
the one member of the archaea in which the phenomenon has been investigated,
Halobacterium salinarum, appears to adhere closely to the pure adder model (Eun
et al. 2017). However, two bacterial species with asymmetric cell division, Caulobac-
ter crescentus (Campos et al. 2014; Iyer-Biswas et al. 2014) and Mycobacterium
smegmatis (Santi et al. 2013; Logsdon et al. 2017; Priestman et al. 2017), as well
as the symmetrically dividing bacterium Pseudomonas aeruginosa (Deforet et al.
2015) have slightly positive values of . In contrast, budding yeast S. cerevisiae (Di
Talia et al. 2007; Soifer and Barkai 2014; Soifer et al. 2016; Chandler-Brown et al.
2017) and especially fission yeast S. pombe (Fantes 1977; Sveiczer et al. 1996) have
negative values of a, implying a longer lingering of maternal effects.

Under the adder model of cell division, cells that are larger at birth divide at an
earlier age because exponential growth in biomass generates the additive increment
A more rapidly. From the form of the exponential-growth model (Equation 9.7),
the division time for a cell of initial size V; under the adder model is

Il + (8/15)] 08)
r
yielding a predicted decline in ¢4 with increasing V;, consistent with observations
in E. coli (Figure 9.4). As discussed below, in a dynamically growing population,
this may lead to an equilibrium mean offspring size > A, as offspring of large-size
deviants will be promoted into the population at a higher rate than those of small-
size deviants.

As a final caveat, it should be noted that even the expanded adder model seems
to be not general enough (Delarue et al. 2017; Jun et al. 2018). As can be seen in
Figure 9.4, the behavior of cells at both extreme ends of the size spectrum deviates
from the model expectations. Even if the adder model is correct as a first-order
approximation, the target value for change, A, appears to decline with increasing
cell size, implying an additional contribution to compensatory growth not accounted
for in the simplest model (Susman et al. 2018).

Division-size determination. The simple models just outlined provide a statis-
tical view of the features of cell division, but leave unanswered questions regarding
the molecular mechanisms by which cells determine that they have reached the crit-
ical threshold for division. Resolving this issue is a fundamental requirement for



CELL GROWTH AND DIVISION 9

understanding how changes in cell sizes and division times might be accomplished
by evolution.

One model invokes a burst of cell-division inhibitor produced at the time of
cell division, which then gradually becomes diluted as cell volume increases. An
alternative model invokes the gradual buildup of an activator molecule to the point
at which a threshold concentration is exceeded. Simple mathematical constructs
have been developed to explain the features of such systems (Sompayrac and Maalge
1973; Amir 2014; Deforet et al. 2015; Soifer et al. 2016).

Where the underpinnings of cell-division time have been sought at the molec-
ular level, inhibitor mechanisms have generally come to the fore. For example, the
soil bacterium Bacillus subtilis determines the time of cell division by use of two-
component interactive system (Weart et al. 2007; Chien et al. 2012). As a central
hub, the tubulin-like cell-division protein (FtsZ) has a nearly constant concentration
under all nutritional conditions. At high nutrient conditions, an inhibitor molecule
(UgtP) oligomerizes with FtsZ preventing formation of the cytokinetic ring until a
relatively large cell size (containing more free FtsZ molecules) is attained, whereas
under low nutrient conditions, UgtP is sequestered away from FtsZ, allowing division
at a smaller cell size. E. coli utilizes a different inhibitor mechanism to determine
the time of division. In this case, an inhibitor molecule oscillates back and forth be-
tween the cell poles, such that a minimum concentration exists at the cell midpoint;
once the concentration drops below a critical point by growth dilution, cell division
ensues (Lutkenhaus 2008).

Inhibitor mechanisms for division-time determination extend to yeasts. Again,
clear mechanistic differences exist among species, although the numerous molecular
details are ignored here. The fission yeast S. pombe utilizes a spatial gradient to
sense its size — an activator of mitosis is centrally located, whereas an inhibitor of the
activator has a gradient initiating at the cell poles; as the cell grows, the inhibitor
concentration declines to the point at which mitosis is activated (Moseley et al.
2009). In contrast, in the budding yeast S. cerevisiae a short burst of synthesis of a
mitosis inhibitor is elicited shortly after cell division in a size-independent manner
(Turner et al. 2012; Schmoller et al. 2015; Litsios et al. 2019). Smaller cells, with a
higher inhibitor concentration at birth, must then add more volume to reduce the
inhibitor to its critical concentration to allow mitosis to proceed. A second protein,
maintained at a constant concentration throughout most of the cell life cycle, plays a
central role here — it acts as an inhibitor of the mitotic inhibitor, but only becomes
effective upon increasing in abundance late in the growth cycle and reducing the
latter to a low enough level to allow division initiation.

What is most remarkable here is that although these four systems all rely on
mechanisms of inhibition to determine cell-division time, the molecular details are
essentially nonoverlapping. As in the case of the regulation of ribosome biogene-
sis, this implies that over evolutionary time the basic machinery dictating the key
life-history features of cells — size and age of reproduction — has been rewired on
multiple occasions. How such modifications are made without imperiling the fitness
of individuals with intermediate states is unclear, and constitutes a major challenge
for evolutionary cell biology.

Aside from this rather unsettling conundrum, the simple systems outlined above
do provide a clear path to achieving an understanding of the molecular basis for
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evolutionary changes in cell size/division time via alterations in the concentrations
and/or activities of the products of as few as two genes, e.g., an inhibitor molecule
and its interacting partner. In principle, for example, larger cell size can be achieved
by increasing the burst size of the mitotic inhibitor upon cell division or by reducing
the steady-state concentration of the inhibitor of the inhibitor.

Environmental determinants of cell size. Whatever the mechanism of cell-size
regulation, it is clear that the concentration of the critical agent(s) must vary with
environmental conditions. Cell size typically increases with nutrient availability,
which under the adder model implies an effective increase in A. For example, in
E. coli, by far the most closely studied species, cell volume increases exponentially
with cell-division rate (Taheri-Araghi et al. 2015), a response first documented in in
Salmonella typhimurium (Schaechter et al. 1958) and observed to different extents
in many other bacteria (Jun et al. 2018). In S. typhimurium and E. coli, there is
a ~ 5-fold increase in cell volume over the full range of growth rates (Volkmer and
Heinemann 2011; Si et al. 2017), whereas the full response in the photosynthetic
cyanobacterium Synechocystis is a 1.5-fold increase in cell volume (Zaviel et al.
2019).

A positive relationship between cell volume and growth rate has also been doc-
umented in unicellular eukaryotes, although the response is often closer to linear
than exponential. For example, the ciliate Tetrahymena exhibits a two-fold increase
in cell volume with nutrient availability (Zalkinder 1979), and the budding yeast S.
cerevisiae (Tyson et al. 1979; Ferrezuelo et al. 2012) and the green alga Chlorella
pyrenoidosa (Prokop and Ricica 1968) both have five-fold ranges.

Given this near-universality of the positive physiological response of cell volume
to growth rate, it too has often been ordained as a “growth law.” Although the
underlying molecular mechanisms remain unclear, a phenomenological model that
fits the data quite well in E. coli (Amir et al. 2017; Jun et al. 2018; Si et al. 2019)
is potentially informative. Here, the idea is linked to the fact that when growing
at rapid rates, bacteria can have multiple nested genomes. This pileup of partially
replicated genomes occurs when the rate of genome replication lags the rate of
production of the remaining cellular constituents, providing a possible indication of
high-growth conditions. Because the replication of each circular genome initiates
at a single origin of replication, there are two of these in a cell for each genome-
replication initiation.

If one considers the unit of cell volume to be the total parent-cell volume per
origin of replication, V., then assuming the latter is independent of the growth rate,
which the data suggest in F. coli (Si et al. 2019), the total cell volume can be
represented as the product of V, and the numbers of origins of replication. Letting
the time to produce a new chromosome origin be t, and the cell-division time be g4,
the mean number of origins of replication in mature cells is 2%/t (Jun et al. 2018),
e.g., if division of the chromosome and the cell is synchronized, t, = ¢4, and there are
two origins (one on each complete chromosome) at the time of cell division. Using
Equation 9.3 to define ¢, then leads to

V =V, .2t/ = Y erto, (9.9)

Although t, is not entirely independent of the population growth rate r, when the
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product is taken into consideration, this model fairly accurately fits the response
of E. coli cell volume to cell growth rate, with an exponential response of V to
r predicted when ¢, is invariant. Moreover, recalling Equation 9.8, an additional
prediction can be made under this model — the negative scaling of cell-division time
with variation in size of birth (within a particular condition) is expected to become
increasingly strong in growth media associated with reduced r. Results from E. coli
grown on different growth media are quite consistent with this prediction (Figure
9.4).

There are some caveats with respect to this model. First, any number of other
underlying scaling determinants beyond the numbers of origins of replication (and
highly correlated with them) might play a key role. Indeed, rather different models
proposed by Serbanescu et al. (2020) and by Bertaux et al. (2020), with a focus
on partitioning of resources between ribosomes and unspecified division proteins, fit
the data just as well. Second, given that we have already seen that the molecular
details of ribosome biogenesis and commitment to division vary among species, one
should be wary of Jacob’s (1998) proclamation that “All that is true for E. coli,
is true for the elephant.” The unit-cell model cannot apply to eukaryotes, which
always undergo a single genome replication per cell division, although in principle,
one might invoke some other target of counting that increases with cell volume.

What remains particularly unclear is the extent to which the size-growth rate
relationship is driven by adaptive processes, i.e., whether increasing cell volume
under high nutrient conditions somehow enhances the cell-division rate beyond that
expected under constant cell size. The model based on unit-cell volume actually
makes no assumption about the benefits of a size shift, simply postulating that the
shift is a by-product of chromosome replication rates lagging rates of cell division
(Amir 2017). Below, another argument is made as to how, under the adder model,
cells phenotypically shifted to larger sizes might passively accumulate in cultures
growing with higher rates of cell division.

What also remains to be reconciled is the relationship between the plastic size-
growth relationship seen within particular genotypic isolates noted here and the
phylogenetic patterns associated with maximum-growth rates noted in the preceding
chapter (Figure 8.5). Among heterotrophic bacterial species, there is a positive
association between maximum cell-division rate and cell size, which is in agreement
with the developmental-plasticity pattern. Also consistent with this pattern is a
long-term selection experiment for higher growth rate in F. coli, which yielded a
parallel response in cell volume (Figure 9.5).

In contrast, among eukaryotic species, maximum cell-division rates decline with
increasing cell size (Figure 8.5), contrary to the within-species response to a shift in
nutrient availability (Figure 9.6A). Why there is there a conflict between responses
at the evolutionary and physiological levels in eukaryotes but not in prokaryotes?
One possibility is that, despite retaining the physiological downshift in size under
low-nutrient conditions, the total growth capacity of eukaryotic cells with increasing
size is compromised owing to the reduction in efficiency of natural selection imposed
by the increased power of random genetic drift (Chapter 8). By extension, if this
hypothesis is correct, small- to moderate-sized bacterial species should retain the
flexibility to jointly evolve large cell size and high growth rates (Figure 9.5), whereas
eukaryotic cells should be much more constrained, possibly even with a negative
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correlation.

Finally, we consider the effects of temperature, one of the most widely vary-
ing environmental parameters and a central determinant of cell physiology. Essen-
tially all biochemical reaction rates, membrane fluidity, and diffusion coefficients
increase with increasing temperature. Given the positive association of cell size and
growth rate in environments with constant temperature, one might expect a paral-
lel response to temperature, with higher temperatures, which induce faster growth
(within physiological limits), resulting in larger cell volumes. Unfortunately, there
is remarkably little information on this matter, although in their seminal work,
Schaechter et al. (1958) found that Salmonella cells grown at low temperature are
substantially larger than those growing at identical rates (with lower nutrients) at
higher temperatures. Their results suggest that temperature induces a different
cell-size response to growth rate than does nutrient availability — to maintain a spe-
cific growth rate at lower temperatures, individual cells seemingly have to be larger
(Figure 9.6B).

How generalizable is this sort of observation? There is a long history of thought
on the relationship between organism size and temperature, mostly focused on mul-
ticellular species. Here, the general idea is that organisms living in cooler envi-
ronments have larger body sizes (within and among species), ostensibly because
reduced surface:volume ratios reduce the potential for heat loss. In deference to the
originator of the idea, the pattern has come to be known as Bergmann’s (1847) rule.
Although its generality has been questioned for multicellular organisms (Riemer et
al. 2018), it does appear to hold for microbes, although likely for different reasons
than proposed for homeothermic vertebrates. In every study where the matter has
been closely investigated, average cell volume declines with increasing temperature,
while the growth rate increases. Such observations have been drawn from ciliates,
flagellates, amoeboid heterotrophs, and diverse photoautotrophs, with an overall
average ~ 25% increase in cell volume typically accompanying a 10°C decline in
temperature (Atkinson et al. 2003; Fu and Gong 2017; Zohary et al. 2020). If noth-
ing else, such observations demonstrate that the positive association between cell
size and growth rate found in different nutritional environments is not generalizable
to other environmental effects.

Again, whereas such a universal temperature response across the Tree of Life
might suggest that a general adaptive hypothesis is required for such behavior, but
no general explanation has yet emerged for such patterns. Indeed, given the exis-
tence of size-selective predation and potential size-dependent outcomes of competi-
tive interactions and physical-environmental effects, mortality rates are likely to be
size-dependent, so it is by no means clear that large cell-size is uniformly favorable
in environments with low temperature (or high nutrient levels). Thus, it is worth
considering whether the physiological response to temperature change, running in
the opposite direction to that induced by nutritional differences, is a by-product
of the molecular mechanisms that set times to division. Future work in this area
should look to the numerous experiments that have shown that when the transla-
tional capacity of ribosomes is compromised by chemical manipulation in E. col,
the phenotypic scaling between cell size and growth rate runs in opposite directions
to the nutrient-based pattern (Scott et al. 2010; Jun et al. 2018; Serbanescu et al.
2020). Perhaps the same underlying mechanism applies to cold temperatures.
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Scaling of Intracellular Features

It is well known that various organs, tissues, and other body parts scale with body
size as multicellular organisms grow (Thompson 1917), a phenomenon known as
developmental allometry. Less clear is the extent to which internal cellular features
(including transcript and protein numbers, organelle numbers and size, etc.) scale
as cells grow from birth to maturity. A general positive relationship between cellu-
lar components and cell volume can be expected, as the organelles and molecular
constituents of cells have functional roles whose total demands typically increase
with the volume of cell, but the precise pattern of scaling is less clear.

On the one hand, intracellular features might scale isometrically throughout
growth (thereby keeping the concentrations of all constituents of the intracellular
environment relatively constant). This is consistent with exponential growth in cell
volume noted above, which implies the maintenance of constant growth capacity
per unit cell volume regardless of cell size. On the other hand, as cells grow and
experience reductions in the surface area:volume ratio, the effective availability of
nutrients per unit biomass may be reduced. If so, altered investments in machinery
associated with nutrient uptake and intracellular transport may be required, much
like the responses of ribosome investment seen when cells are grown under different
nutrient conditions.

For the few eukaryotic cellular traits with a modicum of data, isometric scaling
appears to be the norm. For example, in yeasts, mitochondrial volume constitutes
~ 1% of cell volume throughout life in S. cerevisiae (Rafelski et al. 2012), ~ 10%
in Candida albicans (Tanaka et al. 1985), and ~ 9% in Cryptococcus neoformans
(Mochizuki et al. 1998). Isometric scaling is also true in HeLa cells, with the frac-
tional volume of mitochondria being ~ 10% (Posakony et al. 1977). Throughout
growth in Fuglena gracilis, the plastid constitutes ~ 16% and the mitochondrion
~ 6% of the total cell volume (Pelligrini 1980). Likewise, in the green alga Chlorella
fusca, the volumetric contributions of plastids, mitochondria, and vacuoles remain
nearly constant, at 40, 3, and 10% respectively (Atkinson et al. 1974). Total vac-
uole volume also scales nearly isometrically in S. cerevisiae, constituting ~ 6% of
cell volume throughout the cell cycle (Chan and Marshall 2014; Chan et al. 2016).

Compelling evidence for cell-volumetric control of organelle size derives from
observations on the eukaryotic nucleus. In both S. cerevisiae and S. pombe, nuclear
volume comprises a nearly constant ~ 6 to 8% of cell volume throughout cell growth
(Jorgensen et al. 2007; Goehring and Hyman 2012). Transplants of nuclei from small
to large cells reveal that the nucleus expands to the size expected given the host-cell
volume. Such responses are not affected by the amount DNA in the nucleus, as
similar responses are observed when DNA content is increased as much as 16-fold
(Neumann and Nurse 2007). Similar responses have been seen in vertebrate cell
cultures (Levy and Heald 2012). Notably, across a wide range of prokaryotic species
(without nuclear envelopes or histone-packaging of chromosomes), nucleoid size also
grows nearly isometrically with cell volume within the growth cycle (Gray et al.
2019).

Although the molecular mechanisms underlying homeostasis of cytoplasmic
compositions throughout the cell cycle remain unknown (Chan and Marshall 2010,
2012; Goehring and Hyman 2012; Brangwynne 2013), the general picture emerg-
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ing is that eukaryotic cells typically operate as bioreactors, with relatively constant
internal compositions, until rapid remodeling takes place at the time of division.
It remains to be seen, however, whether individual cellular features grow indepen-
dently through time at roughly the same rate, or are somehow mutually guided via
feedback associated with cell volume. These two alternative models make some-
what different predictions with respect to scaling relationships (Foundations 9.3).
Passive homeostasis might simply arise from global changes in transcription rates
in response to growth rate, thereby leading indirectly to coordinated assembly of
subcellular compartments without the need for elaborate system-specific regulatory
mechanisms.

What remains unclear is how the ontogenetic patterns noted here relate to
among-species scaling patterns observed at the phylogenetic level (Chapter 8). Re-
turning to the questions relating to cell size and growth rate in the previous section,
are the prevailing statistical relationships seen between pairs of characters during
development recapitulated over evolutionary time with the divergence of phyloge-
netic lineages, or can evolution promote shifts in cellular composition in arbitrary
directions? An organism’s repertoire of developmental and phenotypic plasticities
sets the range of phenotypic combinations that can be achieved and tested by nat-
ural selection prior to genetic change, so in principle genetic alterations that simply
hardwire a plastic response into a constitutively expressed phenotype may provide
a readily accessible route to multivariate evolution. This very old idea (Baldwin
1896; Waddington 1942) remains controversial, but essentially suggests that evo-
lution will typically exploit the lines of least resistance by genetically assimilating
pre-existing possibilities, not very different than the conventional view of descent
with modification.

If that is the case for intracellular architecture, then the observations noted
above suggest that isometric scaling of eukaryotic cell parts should prevail at the
phylogenetic level. Although the topic is largely unexplored, the kinds of phyloge-
netic scalings outlined in Chapters 7 and 8 provide compelling material for future
investigation. Indeed, with its strong molecular basis, evolutionary cell biology pro-
vides a compelling platform for understanding the mechanistic links (or lack thereof)
between allometric scaling relationships at the ontogenetic, environmental (physio-
logical), and phylogenetic levels.

Phenotypic Variation in Cell Size and Division Time

Although the preceding discussion has focused largely on the average behavior of cell-
growth features, the variation in cell traits generated by the stochasticity of events
inherent in growth-related processes is nontrivial. Sources of variation for cell size
and growth rate include: 1) variation in birth size owing to imperfect partitioning at
cell division; 2) variation in numbers of ribosomes and of other critical molecules per
cell, partly associated with variation in initial partitioning, but also from subsequent
events such as transcription and translation; 3) inaccuracies in the growth-increment
target; and 4) extrinsic variation in the microenvironment.

Numerous attempts have been made to model the steady-state distributions of
cell size and division time incorporating one or more of these factors (e.g., Powell
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1956; Scherbaum and Rasch 1957; Koch and Schaechter 1962; Tyson and Hannsgen
1985a,b; Taheri-Araghi et al. 2015; Jun et al. 2018). There is by no means uniformity
in opinion on the forms of cell-feature distributions, and the statistical details will
not be pursued here. However, it is worth noting that predicted patterns are often
closely related to formal distributions derived in the early days of statistics for
entirely different reasons. For example, the Yule (1925) distribution can be used to
describe the situation in which a number of cell parts have to be duplicated during
the cell-growth process, with each duplication occurring independently with fixed
probability per unit time, and cell division occurring at the time of duplication of the
final part. In contrast to this parallel (autonomous) view of cell growth, a Pearson
Type III distribution describes a situation in which cell division takes place only after
the completion of a series of consecutive (interdependent) steps, with each initiated
step completed with a certain probability per unit time following the exit from the
preceding step (Kendall 1948). Although these models do not strictly incorporate
variability in size at birth, they do have features that are conceptually connected to
the assumptions under the adder model, where a certain amount of cellular biomass
must accrue before the cell divides. They also generate skewed distributions, with
long tails to the right, and superficially similar to what is typically seen with real
data (Figure 9.7).

A review of results from single-cell monitoring demonstrates that the magni-
tude of standing variation among genetically uniform cells is generally quite large.
Observations from well-mixed laboratory cultures of unicellular species suggest that
coefficients of variation (CV, equal to standard deviation divided by the mean) in
the range of 0.1 to 0.5 are common for size at birth and maturity, incremental ad-
dition, and age at division (Table 9.1). Such CVs are substantially higher than
those observed for morphometric traits in genetically variable samples of multicel-
lular organisms, which are usually on the order of 0.05 to 0.10 (Lynch and Walsh
1998).

Owing to bursty transcription and translation (Chapter 21; Rhee et al. 2014;
Cao and Grima 2020), high levels of cell-to-cell variation extend to the molecular
level, and this likely feeds back to generate variation in cell life-history traits. For
a diversity of prokaryotes and eukaryotes, the CV for the number of molecules of
particular proteins ~ 772 where 7 is the mean number of proteins/cell (Vallania et
al. 2014). The average number of protein molecules per genetic locus per cell ranges
from 10 to 10° from the smallest to the largest cell types (Figure 7.4), implying CV
~= (0.6 to 0.1, with some evidence suggesting that 0.1 may be close to the asymptotic
lower limit for highly expressed proteins (Keren et al. 2015). The CV for protein
numbers also increases with decreasing cell-division rates by a factor of ~ 3 over the
whole range of growth rates (Keren et al. 2015).

Table 9.1. Coefficients of variation (CV, standard deviation divided by the mean) for
growth-related features of cells.

Species Trait (A Reference

Bacteria:
Aerobacter cloacae Generation time 0.18 Powell 1958
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Azotobacter agilis Elongation rate 0.10  Harvey et al. 1967
Generation time 0.22  Harvey et al. 1967
Bacillus mycotides Generation time 0.48  Powell 1956
Bacillus subtilis Generation time 0.54  Powell 1956
Bacterium aerogenes Generation time 0.30  Powell 1956
Escherichia coli Elongation rate 0.08  Taheri-Araghi et al. 2015
Division length 0.14  Taheri-Araghi et al. 2015
0.120 Harvey et al. 1967
Birth length 0.16  Taheri-Araghi et al. 2015
Generation time 0.21  Taheri-Araghi et al. 2015

0.28  Harvey et al. 1967
0.30  Kiviet et al. 2014

Added length 0.24  Taheri-Araghi et al. 2015
Proteus vulgaris Generation time 0.32  Powell 1956
Pseudomonas aeruginosa Generation time 0.14  Powell 1958
Serratia marcescens Generation time 0.17  Powell 1958
Generation time 0.14  Tyson 1989
Streptococcus faecalis Generation time 0.27  Powell 1956
Eukaryotes:
Saccharomyces cerevisiae Length of G1 phase  0.46  Di Talia et al. 2007
Schizosaccharomyces pombe  Division length 0.07  Tyson 1989
Tetrahymena pyriformis Generation time 0.12  Scherbaum and Rasch 1957
Division size 0.12  Scherbaum and Rasch 1957

Stochastic partitioning of cell contents at division. As all of the studies in
Table 9.1 involve single genotypes, the observed variance is due entirely to vagaries in
the internal and external cellular environment. An unresolved issue in most studies
of variation in multicellular organisms is the relative contribution of different sources
to overall levels of variation (Lynch and Walsh 1998). However, for cellular traits a
number of insights can be gained from first principles.

As will be seen in Chapter 21, stochastic birth and decay of transcripts and
proteins can generate intrinsic noise with respect to molecular copy numbers. Here,
we consider the ways in which the basic features of molecular segregation during cell
division generates variation among progeny. Such stochastic inheritance can have
an equally if not greater overall effect than intrinsic transcriptional noise for the
simple reason that upstream variation in molecular abundance can further generate
gene-expression noise, and vice versa. Such an outcome is a simple consequence of
the structure of biology — a large fraction of cellular products are responsible in one
or more ways for their own production (Kiviet et al. 2014).

For the simplest case of a cell containing n molecules at the time of division,
with each being independently and randomly distributed to the two daughter cells
with probability 1/2, the average number of molecules inherited per offspring cell is
M, = n/2, but from the binomial sampling formula the variance (i.e., the square of
the standard deviation) will be o2 = n(1/2)(1/2) = n/4. The coefficient of variation
is then CV(n,) = oy, /Tio = 1/4/n, showing that relative to the mean, the standard
deviation is inversely related to the square root of the number of molecules being
partitioned. This simple principle predicts elevated CVs in small cells containing
smaller numbers of molecules. It may also, in part, explain the reduction in CVs

in traits in multicellular species, which might average out the noise from their con-
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stituent cells.

Additional sources of randomness during cell division can inflate the level of
variation. The argument outlined in the previous paragraph assumes a situation in
which each daughter cell draws from an identical cytoplasmic pool. If, however, the
cell volume of daughter cells is unequal (owing to the imperfect positioning of the
division septum), the coefficient of variation for offspring cells becomes inflated to

L-[CV(V)P

n

0.5
CV(n,) = ( [[CV(V)2-H{ICV () + 1}}> ) (9.9)

where 7 is the average number of molecules per adult cell, and CV (V) and CV(n) are
the coefficients of variation for offspring (sister-cell) volume and for the number of
molecules per parental cell, respectively (Huh and Paulsson 2011). Several studies in
bacteria suggest that CV(V) is on the order of 0.1 — 0.078 in E. coli (Trueba 1982),
0.072 in Bacillus subtilis (Nanninga et al. 1979), 0.121 in Caulobacter crescentus
(Trueba 1982), and 0.060 in Schizosaccharomyces pombe (Johnson et al. 1979; Tyson
1989). CV(n) is typically of similar magnitude to that for CV(V) and relatively
similar among species — 0.104 in E. coli (Schaechter et al. 1962; Harvey et al. 1967),
0.101 in Azotobacter agilis (Harvey et al. 1967), 0.109 in Salmonella typhimurium
(Schaechter et al. 1962), 0.161 in the dinoflagellate Gonyaulaxz polyedra (Homma
and Hastings 1989), and 0.067 in the yeast S. pombe (Tyson 1989).

Unless 7 < 100, with CV (V) and CV(n) both < 0.1, it can be seen from Equation
9.9 that random partitioning of cell volume does not greatly elevate the level of
variation in the inherited numbers of molecules beyond the binomial expectation,
1/v/n. On the other hand, if CV(V) > 0.1, the inflation can be greater than tenfold
(Figure 9.8).

Eukaryotic cells have an additional layer of stochasticity in that molecules can
be segregated into vesicles or organelles prior to cell division, which are then ran-
domly partitioned among offspring cells. Huh and Paulsson (2011) provide a general
expression for the variation rendered under this model, but if it assumed that the
number of vesicles per cell are independently distributed, and that the molecules
are randomly distributed among vesicles,

1, {1+ [CVm)H 1+ [CV@)V})O's , (9.10)

4 ~
CV'(n,) ~ (n -
where 7 and CV (v) are the mean and coefficient of variation of the number of vesicles
per cell. From Equation 9.9, we know that CV(n,) > 1/v/@ and possibly as large
as 10. Studies of mitochondrial inheritance in the fission yeast S. pombe (Jajoo et
al. 2016) and of endosome inheritance in mammalian cell cultures (Bergeland et al.
2001) suggest that the partitioning of such organelles is only slightly less variable
than the binomial expectation, which would imply CV(v) ~ 1/4/v. In addition, we
expect the mean number of vesicles (v) to be much lower than the mean number of
molecules (m) per cell. Thus, it is clear that the stochastic partitioning of vesicles
(described in the second fraction in Equation 9.10) can be a dominant source of in-
tracellular variation unless there is some regulatory mechanism for controlling cargo
partitioning among vesicles and vesicle partitioning among offspring cells. More-
over, variable organelle partitioning is likely to generate more phenotypic variation
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among cells than might be expected based just on organelle number. For example,
because mitochondria are the sites of ATP production in eukaryotic cells, and ATP
drives transcription and other cellular processes, mitochondrial partitioning during
inheritance can have nonadditive effects on offspring cell performance (das Neves et
al. 2010; Johnston et al. 2012).

Finally, it is worth noting that some cellular features can lead to a less variable
pattern of inheritance of intracellular contents than expected by chance. For exam-
ple, in E. coli (and many other bacteria) the genome is compacted into a centrally
located nucleoid. The resultant mesh-like features serve as a barrier to the move-
ment of ribosomes, which then become more concentrated towards cellular poles
for purely physical reasons (Castellana et al. 2016). This may lead to a more even
distribution of ribosome numbers in progeny cells than expected if each ribosome
were drawn independently.

Phenotypic Variation and Adaptation

As explained in prior chapters, much of evolutionary change is not a product of
natural selection, and as adaptive as they might seem superficially, certain kinds
of changes can only be efficiently promoted by selection under a narrow subset of
population-genetic conditions. Nonetheless, either unaware or unconvinced of such
issues, numerous investigators have asserted that variation-inducing features, like
those noted above, are not simple consequences of biophysical constraints, but have
been advanced by natural selection as strategies for survival in variable environ-
ments. There is, however, a remarkable void of evidence for phenotypic variance
serving an adaptive purpose, and good reasons to think otherwise.

The following provides an overview of the general consequences of phenotypic
variation for the process of natural selection. First, we consider how nonheritable
environmental noise, such as that induced by cellular stochasticity, reduces the re-
sponse to directional selection on a trait by obscuring the genetic differences among
members of a population. Second, we demonstrate how, even in the absence of ge-
netic variation, selection can yield a transient (and in some cases persistent) change
in the phenotypic properties of a cell lineage, provided the environmental devia-
tions among individuals are at least partially heritable, as will often be the case
for growth-related traits. Finally, we will return to the issue of whether phenotypic
variation (within genotypes) is maintained by natural selection as a mechanism for
coping with a variable environment.

Environmental variation and the efficiency of selection. One of the bedrock
results of evolutionary theory concerns the nature of the underlying determinants
of the resemblance between relatives. Understanding this issue is critical to un-
derstanding processes of adaptation. Although the process of natural selection will
always proceed provided there is fitness-associated phenotypic variation upon which
to operate, only the fraction of variation with a heritable genetic basis will lead to
permanent evolutionary change. As will be shown in the following section, heritable
environmental effects can also lead to some response to directional selection, but
any such response is transient, quickly decaying away once the prevailing pattern of
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selection is terminated.

The central question here is the degree to which offspring phenotypes resemble
those of their parents. For asexually reproducing cells, this is simply defined by the
fraction of the phenotypic variation that is genetic in basis, a quantity known as
the broad-sense heritability (or H?) (Foundations 9.4). This key measure is readily
estimated by taking a random sample of a population and regressing offspring on
parental phenotypes (Lynch and Walsh 1998). The best-fit slope, which almost
always falls in the range of 0.0 to 1.0, is equivalent to H? (Figure 9.9). Because total
phenotypic variance is the sum of contributions from genetic and environmental
effects, the higher the background noise from environmental causes, the lower the
heritability of the trait.

Now imagine a parental population with phenotypic mean P,, with directional
selection moving the parental mean to P;), yielding a change of S = ?;, — P,. This
difference S in mean phenotypes prior to reproduction is generally referred to as the
selection differential. As an example, Figure 9.9 shows a situation in which an initial
phenotype distribution (black bell-shaped curve) is shifted to the right by viability
selection (red curve). The diagonal line denotes the parent-offspring regression. If
there were perfect transmission of phenotypes across generations, i.e., if H? = 1,
the mean offspring phenotype would be identical to that of the selected parent
generation, and the response to selection (R) would equal the selection differential.
However, if there is environmental variance for the trait, such transmission will
be less than perfect because the parental phenotypes deviate from their underlying
genotypic values. If there is no genetic variation, there will be no permanent selection
response at all. Summing up, for a population of asexually reproducing cells, the
response to selection is simply

R=H?S (9.11)

(Figure 9.8), showing that H? is equivalent to the fraction of the selection differential
that is transmitted across generations. In a simple fashion, this result illustrates that
the ability of natural selection to promote genetic change declines with increasing
environmental variation.

Inheritance of environmental effects. Although a permanent response to di-
rectional selection requires the promotion of underlying genetic change, a transient
response can sometimes be achieved in the absence of genetic variation. Because
selection operates regardless of the source of phenotypic variation, if variation at the
phenotypic level owing to intrinsic and/or extrinsic environmental effects is partly
heritable across generations, the mean phenotype will still move in the direction of
selection, even in the absence of genetic variation (Foundations 9.5). Unlike the
situation with genetic change, however, such a shift will not be permanent. Rather,
under persistent directional selection, the population mean phenotype is expected
to reach an alternative stable state reflecting a balance between the directional force
of selection operating on phenotypes and the erosion of progress each generation re-
sulting from the dilution of inherited environmental effects. If selection is relaxed, all
progress due to the inheritance of acquired environmental deviations will be quickly
eroded away.

This sort of transient response to selection is expected to apply to any cellular
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feature that is partly inherited across generations. For example, any trait that is
a function of the number of molecules within a cell (such as a metabolic rate) will
naturally be subject to inheritance across cellular generations owing to the fact that
the contents of progeny cells are derived immediately from parental-cell constituents,
with the molecular composition subsequently undergoing turnover associated with
continued production and degradation. Given that offspring in unicellular species
inherit half of their parent-cell constituents, these kinds of effects are expected to
be much more significant than in multicellular species.

These kinds of effects are of likely relevance to laboratory experiments that
either intentionally or indirectly select for extreme phenotypes. For example, as
noted above for the adder growth model, large adult cells yield large progeny cells
(although not as large, on average, as themselves), which more rapidly reach the
point of cell division. Smaller cells take a longer time to reach the requisite cell-
volume increase A, and hence lag in terms of their contribution to the growing
population. Although the descendants of deviant cells will gradually move back
towards the expected offspring size of A, with imperfect cell division, extreme cell
sizes will continuously be produced anew, recreating the biasing process. This verbal
model needs to be worked out in a more formal manner, but it provides a potentially
simple and general explanation for the consistent observation of cells becoming larger
in environments with higher nutritional status that applies to both prokaryotes and
eukaryotes.

A selection experiment by Yoshida et al. (2014) may be relevant here. Using a
cell sorter, they selected for smaller cell size in cultures of E. coli for 22 consecutive
days by allowing only the smallest 1% of reproducing cells to propagate to the next
generation. Overall, a decline of ~ 20% mean size was observed, with the variance in
cell size declining only slightly (implying that sufficient opportunity for selection, but
not necessarily genetic variance, remained throughout the experiment). Sequencing
the entire genome of one selected population revealed only a single nucleotide change,
the relevance of which remained unclear.

Although the logic just outlined provides a simple argument for why one expects
an elevated resemblance between parents and offspring associated with transiently
heritable environmental effects, there has been some suggestion of an even higher
correlation between colateral relatives within genetically uniform cultures of cells.
For example, Sandler et al. (2015) found that the correlation between cell-division
times in maternal and offspring lymphoblast cells is just 0.04, whereas that between
sister cells is 0.71, and that between first-cousins is 0.58. They call this elevated
correlation among cousins relative to that between mother and offspring cells the
“cousin-mother inequality.” Similar observations have been made with cell-lineage
studies of several bacterial species (Powell 1958). For example, in Aerobacter cloacae,
the correlation in cell-division time is -0.15 for mother-daughter cells, but 0.44 for
sibs, and 0.19 for first cousins. Likewise, for Serratia marcescens, these correlations
are, respectively, -0.20, 0.58, and 0.38. The reduced correlation between first cousins
relative to that between sibs is consistent with a progressive dilution of shared
effects, and Powell observed a still further decline for second cousins. Cultures of
mammalian cancer and embryonic stem cells exhibit similar behavior (Froese 1964;
Kuchen et al. 2020).

Superficially, these results suggest a mechanism of inheritance that is lost for one
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generation, and then regained in the next, with subsequent erosion of the correlation
occurring among the parallel descendants of maternal lineages. This led to the claim
that such reappearance of heritability cannot be explained by stochastic inheritance,
and requires an underlying deterministic mechanism (Pearl Mizrahi et al. 2015;
Sandler et al. 2015). Although a model can be set up in which an internal oscillator
(putatively a circadian clock) operates with a periodicity such that first cousins are
born at approximately the same time (Sandler et al. 2015), the following simple
argument indicates that a deterministic mechanism is not at all necessary.

Imagine that parent cells have their division times determined by physiological
effects experienced early in life, but that en route to division, additional resources are
gained (or lost) that will influence the division times of their offspring, e.g., a burst
of transcriptional /translational activity late in the maternal cell cycle. Upon fission,
these resources will then be approximately equally allocated to the two progeny cells,
causing a sib correlation in the population, but having little (if any) effect on the
maternal-offspring correlation. Although sibs share maternal effects, only a fraction
of these will be transmitted to the next generation (leading to a smaller first-cousin
correlation, and a still smaller one for second cousins) (Staudte et al. 1996).

The adaptive value of phenotypic variation. We finally turn to the common
argument that within-genotype phenotypic variation is molded by natural selection
as a bet-hedging strategy to deal with environmental variation (Thattai and van
Oudenaarden 2004; Kussell and Leibler 2005; Fraser and Kaern 2009; Eldar and
Elowitz 2010; Zhuravel et al. 2010; Kiviet et al. 2014; Ackermann 2015; Jahn et al.
2015). Aside from the fact that cellular features exhibit quite substantial variation
owing simply to the intrinsic stochasticities of cellular processes, there are several
compelling theoretical reasons for thinking that such selection should be the ex-
ception rather than the norm. The focus here is not on major discrete phenotypic
changes induced by environmental triggers (such as spore formation, or transition
to motility), which in many cases almost certainly represent adaptive survival mech-
anisms, but rather on the continuous range of variation typically associated with
quantitative traits such as growth rate, cell size, and metabolic rates.

First, one of the most substantive reasons for questioning assertions about adap-
tive phenotypic-variation relates to the fact that selection is agnostic with respect
to the underlying genetic/environmental determinants of variation. If, for example,
selection favors an extreme phenotype, when individuals at the extreme are largely
there as a consequence of nongenetic effects, the ability of selection to promote in-
dividuals with a genetic predisposition to extreme trait values will be compromised.
This is because individuals with particularly extreme genetic values will compete
for promotion by natural selection with those with more average genetic values but
higher variance in expression (Bull 1987). Thus, selection for variance-producing
genotypes is difficult when levels if stochastic phenotypic variance are already high,
and the likelihood of success is even lower if there is a genetic correlation between the
expected genetic value of an individual and the conditional phenotype distribution
around the expectation.

Second, selection on phenotypic variation is a second-order effect, as individual
genotypes are not promoted on the basis of their own expected genotypic values
but via the distribution of phenotypes of their descendants. Unless there is contin-
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uing fluctuating selection for individuals at the opposite phenotypic extremes at a
sufficiently high rate, the link between genotypes and their ability to differentially
generate variation will be weak. This will especially be the case for sexually re-
producing species where recombination will progressively remove the disequilibrium
between parental genotypic values and descendant phenotype distributions.

Although these arguments do not entirely rule out the possibility of direct se-
lection for the production of broad phenotype distributions, they do indicate that
any convincing support for such a form of adaptation should be accompanied by
evidence that the preceding arguments can be dismissed. It is one thing to hypoth-
esize on the optimality of a complex feature, but quite another to demonstrate that
natural selection is actually capable of advancing such change.

As one example of further interpretative difficulties here, Hashimoto et al. (2016)
used single-cell monitoring methods to demonstrate that the rate of exponential
growth of a culture of E. coli with the same average cell-division time is elevated if
there is variance around the mean, arguing that these results demonstrate a “fun-
damental benefit of noise for population growth.” As we know that the rate of
population expansion (r) is inversely related to cell doubling time (tp) (Equation
9.2), this result was readily predictable in advance — for any absolute change in
tp, the increment in r with decreased tp is greater than the decrease incurred with
increased tp. This behavior results simply because in a growing population, r is
bounded above 0.0 and increases at an accelerating rate as tp becomes small.

Consider, however, the situation in which the population is declining rather
than increasing. In this case, a sublineage of cells with a certain absolute deviation
in survival time below the average will experience a greater change in the rate of
decline than will a sublineage with a positive deviation of the same absolute amount.
Here, variation in the underlying trait enhances the rate of decline of the sublineage.
This is not a trivial example for the simple reason that, on average, populations
ultimately must go through equal periods of growth and decline, else the population
will either go extinct or fill the universe.

More generally, the relationship between the level of variation and the rate of
growth of a cell lineage can be seen to be a simple consequence of the form of the
fitness function (Figure 9.10). If the relationship between phenotype and fitness is
concave upward, the average fitness of a variable population will be greater than
that of a population having the same mean phenotype but no variance. In contrast,
if the fitness-phenotype relationship is concave downward, the opposite occurs — in
this case, the boost in fitness from the upwardly deviating phenotypes is smaller
than the loss of fitness in downwardly deviating phenotypes. An extreme case can
be seen for the situation in which the trait is under stabilizing selection with the
mean phenotype coinciding with the optimum — any deviation from the optimum
will result in a decline in fitness. Only for the special situation in which the fitness
function is perfectly linear is the influence of variation on fitness effectively neutral,
owing to the fact that equal upward and downward phenotypic deviations have
equivalent effects on fitness.

Finally, even these arguments are not ironclad, as they consider only the sit-
uation in which the phenotype distribution is symmetrically distributed about the
mean. With asymmetric phenotype distributions, many alternative outcomes are
possible, as the bulk of the phenotype distribution may reside in regions where the
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fitness function is either increasing or declining. The salient issue is that there is
no general advantage to phenotypic variation. Although transient situations may
arise in which variation is useful, the same may be said for periods in which it is
detrimental.

The general conclusion then is that intrinsic variation in cellular processes re-
sults in unavoidable high levels of phenotypic variation among individuals, much
higher than observed in multicellular species that undergo strong bottlenecks be-
tween soma and germline. As seductive as it is to attach an adaptive meaning to all
things biological, the idea that intrinsic phenotypic variance is generally promoted
by selective processes appears to be a substantial overstatement if not positively
misleading.

Summary

e A broad swath of observations from a diversity of organisms have led to a number
of patterns involving cellular responses to growth environments that are general
enough to be labeled “growth laws” by microbial physiologists. One of these
is a universal increase in the relative investment in ribosomes with increasing
cell-division rate, presumably reflecting the conflict of the high energetic cost of
ribosomes and their necessity for building cellular material.

e The response of cell-division rate to the concentration of a limiting nutrient
follows a hyperbolic relationship similar to the Michaelis-Menten form for enzyme
kinetics.

e The growth of cell volume within a cellular life cycle is typically exponential in
form, consistent with reaction rates per cytoplasmic volume being nearly size-
independent, and implying that larger cells accumulate biomass at a higher ab-
solute rate.

e A wide array of prokaryotic and eukaryotic cells determine their division times
by monitoring the total change in size, rather than by targeting a specific size
or time, dividing only after a threshold amount of material has been added.
Such behavior naturally leads to cell-size homeostasis, although the model is
best viewed as a first-order approximation.

e The molecular mechanisms underlying the determination of growth-size thresh-
olds often involve the products of just two or three genes, implying relatively
simple evolutionary paths for altering cell size and division time.

e In all species that have been studied closely, cell size increases with the nutrient
status of the environment, but decreases with increasing temperature. It remains
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unclear whether such shifts are adaptive in any way, and they may simply be
inevitable by-products of the underlying molecular mechanisms by which cells
commit to division.

The directions of scaling of cell size and growth rate are concordant at the phy-
logenetic and physiological levels in prokaryotes, but discordant in eukaryotes.
This may be a consequence of the reduction in the efficiency of natural selec-
tion for maximum growth rate, owing to random genetic drift, in eukaryotes of
increasing size.

The ontogenetic response of cell composition to cell volume during individual
growth presents a third axis of bivariate scaling to consider. Most of the data
suggest isometric ontogenetic scaling, such that the relative proportions of cell
contents remain constant during cell growth.

Numerous sources of stochastic variation, ranging from sporadic transcription
/ translation to random partitioning of cellular contents at division, result in
considerable phenotypic variation among genetically identical cells, even in well
mixed environments. The magnitude of such variation, which obscures the visibil-
ity of genetic differences to natural selection, is substantially greater in unicellular
than in multicellular organisms.

Although there has been considerable speculation that such high levels of pheno-
typic variation represent adaptations molded by natural selection to cope with
variable environments, there is little empirical or theoretical support for this
contention.

Owing to the fact that binary fission results in substantial sharing of the contents
of parent, offspring, and sib cells, unicellular lineages are subject to significant
inheritance of nongenetic effects, which can lead to transient shifts in phenotypic
values in the absence of genetic change.
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Foundations 9.1. The scaling of ribosome number and cell growth rate.
Although cells in nature commonly experience fluctuations in resource availability on
time scales shorter than the cell-division time, it is instructive to consider the steady-
state situation in a constant environment, as when cells are grown in a continuous-
flow chemostat (Chapter 8). Under such conditions, the production rate of every
biomolecule (per existing molecule) in the cell must be identical to the rate of overall
cell growth, ensuring a steady-state cellular composition.

The rate of translation per cell, and hence the cellular growth rate, ultimately
depends on the number of ribosomes and the number of mRNA transcripts that they
encounter. Although translation also involves the use of accessory proteins (e.g.,
aminoacyl tRNA synthetases, elongation factor, and many others; Barenholz et al.
2016) and transfer RNAs, under steady-state growth, the abundance of such factors
will be in constant proportion to that of the ribosomes, leaving the latter as a quantifi-
able indicator of the rate of translation, and hence cell growth. This argument assumes
that cells are conservative with respect to the production of energetically expensive
ribosomes, i.e., produce no more than needed to service the current mRNA pool. Here,
we follow a derivation presented by Scott et al. (2010) to quantify this connection.

Letting M denote the total protein mass associated with a cell, and Mg denote
the total protein mass associated with ribosomes and their affiliated proteins, i.e.,
“extended ribosomes,” then fr = Mpg/M is the fractional allocation of proteins to
translation. Letting mp denote the protein mass of a single extended ribosome, which
will hereafter be simply abbreviated to ribosome, the number of ribosomes per cell is
NR = MR/’ITLR = fRM/mR.

Assuming that all ribosomes are engaged in translation, and letting k7 denote
the rate of translation (i.e., the rate at which amino acids are added to elongating
protein chains, here assumed to be constant), and letting m 4 4 be the average mass of
an amino acid, the rate of increase in cellular protein mass is

dM

—_— 1.1
i (9.1.1a)
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Because the mass of all components of the cell must increase at the same rate under
steady-state conditions, and cell division must proceed at the same rate as growth in
size, Equation 9.1.1a can also be written as

% =rM, (9.1.1b)
with r denoting the per-capita rate of cell division. The solution of this expression is
M(t) = M(0) - e, (9.1.1c)

where
r=maa - kr- fr/mg, (9.1.2a)

which can be condensed to a simpler form
r=Kg- fr, (9.1.2b)

with Kr = maakr/mp being a measure of the translational capacity of the system
(the rate of protein mass produced per unit mass of extended ribosomes).

Although the preceding derivation assumes that all ribosomes are actively en-
gaged in translation, if a subfraction fg is inactive (independent of growth condi-
tions), then

r=Kgr-(fr— fro), (9.1.2¢)
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which rearranges to

r
fr=fro+ (KR) : (9.1.3)

The central assumptions in the preceding derivations are that the translation
rate of engaged ribosomes (kr) and the fraction of unoccupied ribosomes (fr,) are
invariant with respect to growth rate. Under such conditions and subject to the
constraint that fr < 1, Equation 9.1.3 predicts a linear relationship between the
fraction of protein invested in extended ribosomes and the rate of cell division, with
the intercept being equivalent to the fraction of total cellular protein associated with
unengaged ribosomes, and the slope (1/Kg) measuring the inverse of the translational
capacity. If fro and Kp are functions of r, the scaling relationship in Equation 9.1.3
would be altered.

Foundations 9.2. Nutrient limitation and cell growth. In Foundations 9.1, an
expression for the rate of cellular growth was derived in terms of ribosome processing.
However, an alternative expression for the growth rate can be couched in terms of the
rate of conversion of a limiting nutrient into biomass, again represented by the total
mass of protein M. Under steady-state conditions, both approaches must yield equiv-
alent answers for the rate of cell growth, as the rate of amino-acid uptake/biosynthesis
must equal the rate at which amino acids are incorporated into proteins.

We first introduce the second approach, and then unify the two into a joint
expression. Again following Scott et al. (2010), we let

dM
=c-kp- Mg, (9.2.1a)
dt
where Mg is the summed mass of the enzymatic proteins involved in nutrient acqui-
sition and conversion into amino acids,

kE = ]{/’Eymax (KSS+ S) ) (921b)

is the rate of nutrient acquisition per mass of enzyme protein, following the Michaelis-
Menten form, which depends on the nutrient concentration (5), and the half-saturation
constant (Kg), and ¢ is a constant representing the conversion of the nutrient into M.

We now assume that the total protein in a cell (M) can be partitioned into three
sectors (Figure 9.11): a fraction taken to be quantitatively (although not necessarily
qualitatively) invariant with respect to cell physiology; a fraction consisting entirely of
ribosomal proteins and other proteins associated with translation (extended ribosomes,
as in Foundations 9.1); and a fraction associated with metabolic features that respond
to nutritional changes. Letting these three fractions be fg, fr, and fp respectively,
the system is constrained to obey

1= fo+ fr+ fp. (9.2.2)

Because fg is taken to be a constant, this means that increased investment in nutrient
acquisition (fp) necessitates a parallel reduction in investment in protein production
fr)-

Further letting fr denote the fraction of protein mass in sector P devoted to
uptake of the limiting nutrient, i.e., fg = Mg/Mp, and recalling from Foundations
9.1 that fp = Mp/M, Equation 9.2.1a expands to

% =(c-kg-fe-fp) M. (9.2.3)
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As in Foundations 9.1, the product within the parentheses is equivalent to the rate of
exponential growth, which can be further abbreviated to

r = KN . fp, (924)

where Ky = ¢- kg - fg can be viewed as the nutritional capacity of the system.

We next wish to generate a more general growth-rate expression taking into joint
consideration the underlying details about both translation (Foundations 9.1) and nu-
trient uptake. The key point is that under balanced growth, the rate of nutrient
conversion into biomass must be equivalent to the rate of protein production by ribo-
somes. There is in addition the constraint that the flexible fraction of the proteome
must be apportioned into the fractions associated with translation (fg) and nutrient
provisioning (fp).

As noted above, given that fr+ fp = 1— f, there is an intrinsic tradeoff between
the two processes. The maximum possible fractional allocation to ribosomes (or to
the remaining pool) is fr max = (1 — f@), or in other words,

fR = fR,max - fP- (925)

Recalling Equation 9.1.2c and substituting for fr from the preceding expression,

r=Kpg- (frRmax — frR0 — fP), (9.2.6)

where, as in Foundations 9.1, K is a measure of translational capacity, and fgo is
the fraction of investment in inactive ribosomes. Further substitution for fp from
Equation 9.2.4 and some rearrangement leads to the overall solution

r= KR : (fR,max - fR,O) : (,K—R[‘(FN_KN> 5 (927)

This expression provides a mechanistic link between nutrient uptake and conver-
sion to protein biomass by ribosomes, in effect describing the situation in which the
allocation to R and P proteins, fr and fp, is mutually adjusted such that the rate of
intake of critical nutrients is matched by the rate of conversion into protein, subject
to the constraint that these must sum to 1 — fg. The fraction in large parentheses on
the right is a function of the translation and nutritional capacities of the system, with
the cell growth rate r — 0 as Ky — 0, and r asymptotically approaching a maximum
value as Ky — co. Because the fraction on the right equals 0.5 when Kr = Ky, the
ribosomal capacity can be viewed as the half-saturation constant for nutrient capacity.
Thus, despite the added complexities, the overall expression for r retains the form of
a Monod growth equation, with rmax = Kg - (fR,max — fr,0)-

This kind of partitioning model can be taken in a number of other interesting
directions. For example, it has long been known that cells under chronically high
nutrient levels often switch to seemingly inefficient modes of energy production, e.g.,
engagement in fermentation processes, which leave incompletely oxidized products such
as acetate or lactate, as opposed to the citric acid cycle, which oxidizes glucose all the
way down to COs. Such metabolic overflow, or energy spillage, at high resource levels
can be explained by the fact that the machinery underlying fermentation processes
involves many fewer enzymes than that required for the citric acid cycle (Molenaar et
al. 2009; Basan et al. 2015). The hypothesis here is that when the external carbon
supply is high, cells can increase the investment in the protein machinery necessary
for biosynthesis by reducing the investment in the enzymes necessary for input into
such pathways. In contrast, when the nutrient supply is low, investing more heavily
in carbon metabolism allows cells to maximize the limited but potential flux that can
be directed towards biosynthesis.
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Bertaux et al. (2020) and Serbanescu et al. (2020) have extended the preceding
model to incorporate additional sector partitioning, e.g., cell division. These extensions
allow for analysis of the size-growth rate relationship discussed in the text. There is
room for caution in overinterpreting the good fits of models like these, as a large number
of parameters are employed, not all of which are based on extrinsic estimates. Their
value is in helping to clarify the importance of broad classes of potential underlying
mechanisms that can be followed up by further empirical study.

Foundations 9.3. Scaling models for the development of cellular features.
In light of what little we know about the mechanisms driving the quantitative rela-
tionships between cells and their parts during cell growth, consideration of alternative
models may be informative, particularly if they predict alternative patterns of scaling.
Here we evaluate two fairly general models, in both cases assuming exponential
growth of the cell in terms of total volume following Equation 9.7. First, consider
the situation in which a cellular feature grows exponentially and autonomously (i.e.,
independent of cell volume, V') at rate 3, such that the expected phenotypic value at

time ¢ is
2 = 2€”, (9.3.1)

where zy is the phenotypic value at cell birth. Log transforming Equations 9.7 and
9.3.1, solving the first expression for ¢, and substituting into the latter, we obtain

log(z¢) = (f) log(Vy) + ¢, (9.3.2a)

where
¢ =log(zo) — (f) log(Vo), (9.3.2b)

is the intercept of a log-log plot of z; vs. V; throughout developmental progression.
Noting that ¢ is a constant determined by the size of the trait and cell volume at
birth (as well as the growth parameters § and r), this model predicts an allometric
(power law; Chapter 8) relationship, with the slope providing an estimate of the ratio
of growth rates (8/r). If the slope is equal to 1.0, then  must equal r, implying
isometric growth.

Now consider the situation in which growth of the trait is directly linked to the
growth in cell volume via some sort of regulatory mechanism (Harris and Theriot
2016), such that

dz

g =P V=0 Voe™, (9.3.3)
the solution of which is
2 = <f) Vi +c, (9.3.4a)
with
c=2zy— (f) Vo. (9.3.4Db)

Note that the key scaling parameter is again the ratio of growth rates, 3/r. However,
in contrast to the volume-independent model, where there is linear scaling between
the log-transformed values of z; and V;, when trait growth is coupled directly to
cell volume, the scaling is linear on the original scale of measurement. If 3 ~ r,
which the data in the text suggest for volumetric traits, these two models will be
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difficult to distinguish based on growth-trajectory data alone. In both cases, the
relationship will be essentially linear on the original scale of measurement, although
only the autonomous-growth model predicts a zero intercept on this scale.

Foundations 9.4. Parent-offspring resemblance and the response to selec-
tion. The phenotypic measure of a particular trait in a specific individual can be
viewed as the sum of its expected value given its genotypic composition, G, and a
deviation from that expectation, F, owing to both internal effects associated with
stochastic molecular behavior and external effects associated with physical, chemical,
and biological aspects of the environment,

P=G+E. (9.4.1)

The genotypic value G can be thought of as the average phenotypic measure expected
if a large number of individuals of the same genotype were monitored in an identical
environmental setting. The environmental effect £ summarizes the net positive or
negative deviations around G, and has a mean (over all individuals) equal to zero
and variance among individuals of ¢%, (Lynch and Walsh 1998). Provided there is no
genotype-environment covariance (i.e., environmental deviations are independent of
the genetic background), the total phenotypic variance in the population is the sum
of the genetic and environmental variance components,

0% =04 +0%. (9.4.2)

If the offspring of measured parents are allowed to develop to the same stage as
the parents and then measured, one can produce a parent-offspring regression, which is
equivalent to the straight line that best describes the overall relationship (Figure 9.9).
The slope of a best fit line is known to be equal to the ratio of the covariance between
x and y variables (denoted as o(z,y), with the two variables here being offspring and
parent phenotypes) and the variance of the x variable (denoted as o%(x) for parental
phenotypes). (For those unfamiliar with statistics, a variance is the average squared
deviation of measures from the mean, whereas a covariance is the average cross-product
of x and y deviations from their respective means). Letting o and p denote offspring
and parents, assuming asexual reproduction, the covariance between offspring and
parent pairs expands to

o(P,, Py) = 0[(Go + E,), (Gp + Ep). (9.4.3a)

Assuming that the environmental deviations in different generations are uncorrelated
(i.e., not inherited, an assumption relaxed in Foundations 9.5), there can only be
covariance between the genetic values, so

o(P,, Py) = 0(Go, Gy), (9.4.3b)

and because parents and offspring have identical genetic values in an asexual popula-
tion, the genetic covariance is the same as the genetic variance,

o(P,, P,) = o}. (9.4.3c)

The expected slope of the parent-offspring regression is then the ratio of Equations
9.4.3c and 9.4.2,

oG (9.4.4)
o +o0%
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This quantity, which is usually referred to as the broad-sense heritability, is simply
the fraction of the total phenotypic variance attributable to genetic causes. Further
aspects concerning the phenotypic covariances among clonal relatives can be found
in Jun et al. (2018). Slight modifications are required under sexual reproduction,
as parents only transmit half their genetic value to their progeny (Lynch and Walsh
1998).

Foundations 9.5. Transient response to selection without genetic change.
Under the adder model for growth, A is equivalent to the expected increase in cell
volume between cell divisions, and the expected size at birth is also A. This, however,
is only strictly true in the absence of selection on cell size. Imagine a clonal population
of cells with some variation in the realized value of A experienced by individual cells,
owing to the vagaries in intracellular and external environments, and the fact that
cells do not divide with absolutely perfect symmetry.
With variation around the mean A, the size of an adult cell at the time of division
can be expressed as
Vo=Vo+A+en, (9.5.1a)

where Vj is the size at birth, A is the expected growth in size, and e is the deviation
of the actual growth increment from A owing to background variation, assumed to
have a mean value of zero and some variance o%. In the absence of selection, the
expected value of Vj is A, and the previous expression can be written as

Vo =2A+ea, (9.5.1b)

with the expected offspring cell size being Vi = V,/2 = A because the expected value
of ea is equal to zero.

If, however, there is directional selection on cell size, the mean value € is no
longer equal to zero, as the cells with more extreme deviations are differentially pro-
moted. Instead, in the first generation of selection, the average offspring cell size
becomes o

Vo(1) = A+ (ea/2)

assuming that on average half of the mean environmental deviation in the previous
generation is transmitted to each offspring cell. If this same level of selection is con-
tinued for another generation, the mean becomes

Vo(2) = A+ (ea/2) + (€a/4)

as a new deviation is added while half of the prior deviation is partially removed by
50% dilution. Using the series expansion

Y ai= o =) (9.5.2)

P 1—-2z
with z = 0.5, after ¢ generations of constant selection, the mean offspring size is
Vo(t) = A+eall —(1/2)1 (9.5.3)

which asymptotically approaches A + € as t increases.

This shows that the average size of cells in a population can quickly shift to a new
value, with a deviation from the nonselection value A equal to the selection differential
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€a. The central point is that owing to the partial transmission of offspring deviations to
subsequent generations, the mean phenotypes in a population are expected to change if
selection operates on a cellular trait, even if there is no genetic basis for the deviations.
However, in this case, the selection response is transient in that if selection is relaxed,
the initial deviation €a declines by 50% each generation, rapidly returning offspring
cell volume to A. In contrast, any genetic contribution to the selection response would
remain following selection.

Finally, supposing extreme cells can sequester their excess endowment to a degree
that allows greater than 50% retention, then the use of Equation 9.5.2 shows that an
even greater transient boost can be obtained by selection on environmental deviations,
e.g., with x = 0.75, V(t) has an asymptotic value of A + 3ea.

31
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Figure 9.1. Response of various cellular features associated with mRNA translation to changes
in cellular growth rate. References: Candida utilis — Brown and Rose (1969); Fuglena gracilis —
Freysinnet and Schiff (1974); Neurospora crassa — Alberghina et al. (1975); Physarum polycephalum
- Plaut and Turnock (1975); Prototheca zopfii — Poyton (1973); Saccharomyces cerevisiae —
Boehlke and Friesen (1975), Waldron and Lacroute (1975), Bonven and Gullov (1979), Metzl-Raz
et al. 2017; Escherichia coli — Rosset et al. (1964), Forchhammer and Lindahl (1971), Dennis and
Bremer (1974), Young and Bremer (1976), Scott et al. (2010}, Zhu et al. 2016; Aerobacter aerogenes
— Fraenkel and Neidhardt (1961); Tempest et al. (1965).
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Figure 9.2. Various growth (r) and nutrient uptake (1) responses of the marine planktonie chrys-
ophyte alga Monochrysis lutheri to various concentrations of vitamin Bqs, recorded for populations
of cells grown in a chemostat. The upper left and right graphs provide the relationships between
the cell-division rate and external and internal nutrient concentrations. The lower-right graph il-
lustrates the inverse linear relationship between r and 1,/ (). as predicted by Equation 9.5. For
the lower left panel, the straight-line relationship for the rate of nutrient uptake is derived from
Equation 9.4b, which rearranges to (1/u) = (1/tmax) + (Ku/%max)(1/S). The data are from
Droop (1973, 1974, 1984).
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Figure 9.3. Expected relationship between cell volume at birth and at subsequent cell division
under three alternative growth models. A serves as a reference point. Under the sizer model,
regardless of the size at birth, the size at division always returns to 2. Under the simplest form
of the timer model, because of exponential growth, all cells grow by the same factor over a given
duration, so individuals of extreme size produce offspring that are just as extreme; if there are
stochastic deviations in offspring size or growth rates, the size distribution will diverge. Under the
adder model, cells above or below the average still produce deviant progeny, but the average size of
the progeny is less extreme than that of the parental cells, resulting in convergence of the cell-size
distribution to an equilibrium.
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Figure 9.4. Evidence in favor of the adder model for E. coli grown in different media. Pro-
ceeding from left to right, the growth media are increasingly rich sources of energy, carbon, and
other nutrients. Upper panel) By looking at individual cells within each medium (at a constant
concentration), it can be seen that the growth increments to maturity (A) are nearly independent
of the size at birth. Lower panel) The inverse relationship between the cell-division time and cell
volume at birth becomes progressively stronger in media that support lower growth rates. In the
upper and lower panels, respectively, size is presented as cell length and cell volume, although the
two are directly proportional, given that E. coli cells are nearly cylindrical in shape. Note that the
adder model only provides a first-order approximation, as cells at the extremes of the size range
deviate from expectations. From Taheri-Araghi et al. (2015).
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Figure 9.5. Evolutionary trajectories of cell-division rates and cell volume in a 10,000 generation
experiment in which F. ecoli was subjected to persistent selection for higher growth rate. From
Lenski and Travisano (1994).
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Figure 9.6. Idealized views of the response of cell growth rates to environmental effects. A)
The black lines denote the phylogenetic relationship between the maximum rate of cellular growth,
Pmax, taken from Figure 8.5, where it is shown that the scaling is positive for bacteria but negative
for eukaryotes. The four black dots denote hypothetical species, and the red arrows denote the
universal reduction in cell size and growth rate in response to reduced nutrient supplies. B] The
joint response of cell size and growth rate to changes in nutrient availability and temperature for
an arbitrary genotype. The slopes and end points of the lines are arbitrarily placed, although it
is known that rp.. is reduced at lower temperatures, and the overall expectation is that when
nutrient concentrations are manipulated so that cells are dividing at the same rates at different
temperatures, cell size will be larger at the lower temperatures.

Rate of Increase
Rate of Increase

Cell Size Cell Size



46 CHAPTER 9

Figure 9.7. Pearson type-II1 distributions fitted to data on the frequency distributions of cell-
division times for two species of the bacterium Bacillus. From Powell (1958).
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Figure 9.8. Coeflicient of variation for the number of molecules inherited by daughter cells as a
funetion of the coefficient of variation for volume of sister cells, C.‘-V(V). Results are given relative
to the case with simple binomial sampling, as a function of the mean number expected in parent
cells, T, and calculated with Equation 4.9. The coefficient of variation of the number of molecules
per parent cell, CV{?I-(])_. 1s assumed to be equal to 0.1 (based on empirical estimates desecribed in
the text).
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Figure 9.9. The response to directional selection for increased phenotypic values of a continuously
distributed trait, represented by the transition of the black to the red bell-shaped curve. The
difference between mean phenotypes after and before selection, but before reproduction, is known
as the selection differential. The response to selection is determined by the degree to which offspring
phenotypes resemble those of their parents, as illustrated by the diagonal dashed line, the slope of
which is known as the heritability of the trait. In the absence of genetic variation, this regression
line will have a slope equal to zero. Regardless of the heritability, in the absence of selection, the
offspring mean phenotype is expected to equal that of the parental generation.
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Figure 9.10. The influence of the form of the fitness function on the average fitness of a population
of cells. The red lines are fitness functions denoting relationships between fitness and phenotype,
and the dashed lines demarcate the expected fitnesses for three phenotypes, with the flanking two
being equidistant from the one in the middle. In the absence of phenotypic variation, the mean
fitness will be equal to the expectation for the middle phenotype (thick dashed lines), whereas in
the presence of variation (here, assumed to be symmetrical around the mean), the average fitness
for the population of cells (blue arrows) will deviate in a direction depending on the curvature of
the fitness function.
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Figure 9.11. A conceptualized partitioning of cellular proteins into three general pools, one of
which contributes an invariant proportion to the total pool regardless of the cellular nutritional
state (after Scott et al. 2010). The total pool of ribosomal proteins is also considered to contain a
small invariant fraction associated with inactive ribosomes. This leaves the pools of active ribosomal
proteins and metabolic proteins free to vary with respect to each other (the green-yellow boundary
associated with the double-headed arrow can move), but constrained to sum to areas under the
vellow and green sectors.
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