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18. INTRACELLULAR ERRORS

3 November 2017

As noted repeatedly in prior chapters, few (if any) cellular processes have been
pushed to the limits of perfection dictated by the laws of physics. A likely reason
for this is the barrier to natural selection imposed by random genetic drift, com-
bined with the recurrent introduction of deleterious mutations. As a consequence of
imperfections in the cellular machinery, cells make errors, which if not removed are
expected to lead to progressive damage, resulting in elongated cell-division times
and/or shortened lifespans. The challenges are often quite multifaceted. For ex-
ample, the production of properly constructed proteins requires the avoidance of
problems potentially arising via dozens of cellular processes (Figure 18.1).

Cells have evolved multiple processes that seemingly mitigate the physiological
consequences of error production, . For example, the incidence of errors arising
during the replication of new DNA strands (heritable mutations) is reduced by a
proof-reading domain in the primary DNA polymerases (Chapter 8), and problems
arising in nonreplicating DNA are dealt with by a variety of repair mechanisms.
Mechanisms also exist for the detection and elimination of some types of erroneous
transcripts, and some of the stages leading to translation involve proofreading mech-
anisms. A wide array of other cellular processes, including interactions of enzymes
with inappropriate substrates (Chapter 17) and faulty assembly of proteins and their
higher-order structures (Chapter 12), are subject to error.

This chapter will focus entirely on the rates at which errors arise at the lev-
els of transcription and translation, the mechanisms by which these are mitigated,
the energetic burden of error surveillance, and the magnitude of selection operating
to increase the fidelity of transcription and translation. Transcription and trans-
lation errors arise at rates orders of magnitude higher than those incurred during
replication, and this is likely an evolutionary consequence of the transient nature of
such errors. Unlike replication errors, which create cumulative damage in regions
linked to mutator alleles, alleles associated with phenotypic errors will generally be-
come decoupled from their source in no more than a single generation, reducing the
strength of purifying selection against mechanisms of error production. The effects
of such errors may also be diminished by complementation from the frequently large
pool of error-free molecules.

This scenario of diminished selection intensity raises the question as to how cells
have evolved an array of mechanisms for error surveillance at the transcript and
translational levels, and why error rates are so high despite the presence of various
proof-reading mechanisms. A key point made below is that although multiple layers
of surveillance lead to the impression of a highly refined system, and to the common
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assertion that cells are robust to perturbations, the overall level of performance is
likely no greater than that possible with a much simpler system. Such a conclusion
is entirely consistent with the drift barrier on the total performance of a system
being distributed over multiple traits.

Transcript Fidelity

The first step in the successful development of a gene product is the generation
of an appropriate RNA transcript from the underlying genomic sequence. The
RNA polymerases responsible for transcription are typically comprised of several
protein subunits. In eukaryotes, one of these complexes (Pol II) is reserved for the
production of messenger RNAs and micro RNAs, another (Pol I) for the synthesis
of the ribosomal RNA subunits, and a third (Pol III) for transfer RNA production
(Werner and Grohmann 2011). Land plants deploy two additional RNA polymerases
to generate small RNAs used in transcriptional silencing (Wierzbicki et al. 2009;
Haag and Pikaard 2011); these seem to be derived from Pol II, but are highly
divergent in sites that are otherwise conserved in Pols I-III, suggesting the possibility
of reduced fidelity (Luo and Hall 2007; Landick 2009). In contrast, prokaryotes use
just a single RNA polymerase (designated below as RNAP) to service all genes.

Despite their shared functions, the complexity of these enzymes is quite variable,
with eubacterial and archaeal RNAPs consisting of 5 and 12 subunits respectively,
eukaryotic Pols I and III containing 14 and 17 subunits respectively (Carter and
Drouin 2010), and Pols II, IV, and V all comprised of 12 (Haag and Pickaard 2011).
Yet, as will be noted below, despite the fact that eukaryotic RNA polymerases
contain more than twice the number of components as those from eubacteria, there
is no evidence that the former carry out their tasks more efficiently.

Like replication, transcription involves phases of initiation, elongation, and
termination, but several additional processing steps are involved as well (e.g., 5′-
capping, intron removal, and addition of poly-A to 3′ ends). Problems may arise at
each of these stages: 1) transcription initiation at an inappropriate location, which
can be particularly disastrous if it occurs downstream from the translation-initiation
site; 2) inaccurate removal of introns (a problem largely confined to eukaryotes, and
especially significant in multicellular lineages, which typically average five or more
introns per protein-coding gene); 3) premature transcriptional termination (prior
to the translation-termination codon being particularly detrimental); and 4) base-
substitution and insertion/deletion errors.

Errors of the first three types are thought to be common (e.g., Suzuki et al.
2000; Frith et al. 2006), with Struhl (2007) suggesting that 90% of transcription
initiation by Pol II in yeast is nothing more than transcriptional noise. However,
it is often difficult to know whether all aberrant transcripts are actually errors as
opposed to being indirectly involved in various kinds of regulatory pathways. The
remainder of this section will be focused simply on base-substitution errors.

Although the mechanisms underlying transcription fidelity are not fully un-
derstood, they differ from those involved in replication (Chapter 8) in that RNA
polymerases have no proof-reading domains. Instead, transcriptional accuracy relies
largely on correct nucleotide recruitment, with incorrect base incorporation simply
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resulting in polymerase pausing, which provides time for the recruitment of factors
for removing the dangling base (Zenkin et al. 2006; Sydow and Cramer 2009; Sydow
et al. 2009; Kaplan 2010; Yusenkova et al. 2010). In contrast to the situation with
replication, there is no known mechanism for correcting errors after chain elongation
is complete (e.g., by recognizing mismatches in the DNA-RNA hybrid).

As the life spans of individual transcripts are generally substantially shorter
than the longevities of cells, transcription must progress at fairly high rates to meet
cellular demands. The few estimates of average speeds of progression exhibit only
a small range of phylogenetic variation: 46 bp/sec in E. coli (Golding and Cox
2004; Proskin et al. 2010); 20 to 60 in yeast (Mason and Struhl 2005; Larson et al.
2012; Lisica et al. 2016; Ucuncuoglu et al. 2016); 21 in Drosophila (Ardehali and
Lis 2009); 23 in rat (Ardehali and Lis 2009); and 56 in human (Ardehali and Lis
2009). In contrast, replication rates are typically in the range of 100 to 1000 bp/sec
in prokaryotes (Hiriyanna and Ramakrishnan 1986; Stillman 1996; Myllykallio et al.
2000), but just 10 to 50 bp/sec in yeast, flies, and mammals (summarized in Lynch
2007). Thus, transcription is much slower than replication in prokaryotes, whereas
both processes proceed at comparable rates in eukaryotes.

Erroneous transcripts may typically arise by simple copying errors, although
these may sometimes be exacerbated by base damage within the gene itself, as tran-
scription often proceeds across damaged sites by simply substituting an A (Brégeon
et al. 2003; Clauson et al. 2010). Post-transcriptional errors cannot be ruled out,
which is the reason the term transcript- rather than transcriptional-error is adhered
to here. One might think that errors in transcripts could easily be enumerated by
simply comparing the sequences of cDNAs to their genomic sources. However, the
sequencing-error rate is generally substantially greater than the transcription-error
rate, so this approach will not work. Thus, until recently almost all information
on transcript-error rates has been derived via indirect in vitro methods, generally
by measuring the relative incorporation rates of two competing nucleotides across a
specified template.

The average of three E. coli estimates obtained with this kind of approach
(which themselves exhibit a 40-fold range of variation) is 1.4× 10−4 (Springate and
Loeb 1975; Blank et al. 1986; Goldsmith and Tawfik 2009), whereas the thermophilic
bacterium Thermus aquaticus has an estimated error rate of 6.5×10−4 per nucleotide
site (Yuzenkova et al. 2010). The sole reporter-construct estimate for budding yeast
S. cerevisiae is 2.0×10−6 (Kireeva et al. 2008; Walmacq et al. 2009), whereas a single
estimate for wheat is 2.4 × 10−4 (de Mercoyrol et al. 1992). These early estimates,
most likely quite subject to experimental biases, suggest that transcription-error
rates (in terms of sequence fidelity) fall in the broad range of 10−5 to 10−3 per
nucleotide site.

More recently, it has become possible to estimate the genome-wide in vivo error
rate by directly sequencing individual mRNA molecules multiple times (Gout et al.
2013; Traverse and Ochman 2016; Li et al., in prep.) These rates are generally lower
than the indirect estimates, all falling in the range of 10−6 and 10−4 (Table 18.1),
and revealing no obvious phylogenetic pattern (McCandlish and Plotkin 2013). The
highest direct estimates are all from one study (Traverse and Ochman 2016), and
methodological differences may underlie much of the variation, as our own estimate
of the error rate for E. coli, 8 × 10−6, is ten times lower than the estimate for the
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same species by Traverse and Ochman (2016). If their estimates are anomalous, the
range in known transcription-error rates shrinks to 10−6 to 10−5. Thus, the earlier
in vitro estimates are anomalously high.

To put these rates into perspective, our estimate of the transcript-error rate in
E. coli exceeds the known genomic mutation rate per nucleotide site in this species
(Lee et al. 2012) by a factor of 40,000. For all other species for which both rates are
known, the transcript-error rate is inflated by factors of 2,000 to 34,000. Thus, there
is little question that transcription (and/or the downstream accumulation of damage
in circulating transcripts) is substantially more error-prone than DNA replication,
as previously suggested by Ninio (1991a,b). The probability of a base-substitution
error in a small mRNA of ∼ 1000 bp in length is expected to be on the order of 0.1
to 1.0%.

Table 18.1. Estimated error rates associated with transcription and translation. Standard
errors (in parentheses), where calculable, are derived from results of independent studies.
Transcript-error rates and total translation-error rates refer to single nucleotide and amino-
acid substitutions, respectively. From Lynch (in prep.)

Transcription Synthetase Total Translation
Species (×10−4) Loading Translation Readthrough

Prokaryotes:

Agrobacterium tumefaciens 0.099
Bacillus subtilis 0.077
Buchnera aphidicola 0.823
Carsonella ruddii 0.509
Escherichia coli 0.452 0.0011 (0.0004) 0.0052 (0.0027) 0.0050 (0.0017)
Mesoplasma florum 0.154
Mycobacterium smegmatis 0.0168 (0.0147)
Salmonella typhimurium 0.0034 (0.0014)
Five bacteria 0.0017 (0.0009)

Eukaryotes:

Saccharomyces cerevisiae 0.040 0.0055 (0.0018) 0.0162 (0.0124) 0.0111 (0.0047)
Arabidopsis thaliana 0.115
Lupinus luteus 0.0009 (0.0005)
Caenorhabditis elegans 0.040
Mus musculus 0.150 0.0152 (0.0065) 0.0042
Homo sapiens 0.0004 (0.0001) 0.0147 (0.0146)

Translational Fidelity

Even when an mRNA emerges error-free, several additional challenges must be met
if a faithful protein product is to be synthesized (Parker 1989; Zaher and Green
2009). First, specific amino-acyl synthetase proteins (AARSs) must initially harvest
their cognate amino acids. Second, charged AARSs must then pass their cargo on
to the appropriate transfer RNA (tRNA). There is considerable room for error in
both of these steps because the structural differences between some amino acids
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are quite minimal (e.g., valine and isoleucine differ by the presence of just a single
methyl group). AARSs are endowed with proof-reading mechanisms to minimize
misloading errors (Hussain et al. 2010; Reynolds et al. 2010), although some species
of Mycoplasma have lost the capacity for proof-reading in multiple synthetases (Li
et al. 2011; Yadavalli and Ibba 2013). Third, at the ribosome, each codon in an
mRNA must be recognized by its cognate tRNA via codon:anticodon recognition.
Proof-reading appears to occur twice after initial tRNA loading, involving processes
that require GTP hydrolysis (Ieong et al. 2016).

Infidelities at any one of these steps can lead to a diversity of errors in trans-
lated products. For example, misreads of sense codons can lead to alterations in
protein structure/function, with misreading as termination codons leading to pre-
maturely truncated chains. Misreading of termination codons as sense codons leads
to termination read-through.

Despite these immediate functional problems, error rates at the level of trans-
lation are even higher than transcript-error rates. Most attempts to estimate the
rate at which AARSs are mischarged have involved in vitro competition experiments
between cognate and noncognate amino acids. These measures are only rough es-
timates of likely in vivo error rates for two reasons. First, such evaluations almost
always involve simple binary experiments, leaving questions as to the total error
rate expected in a more natural setting where all twenty amino acids are present
simultaneously. Second, most binary tests have focused on the loading of erroneous
amino acids with physical features most similar to the cognate substrate of the focal
AARS, raising the additional caveat that pairwise estimates of misloading rates may
be upwardly biased.

Using this approach, the average pairwise misloading rate for a variety of species
ranges from 0.0004 to 0.0055 (Table 18.1). As these estimates have been obtained
with different methods, different AARSs, and different pairs of cognate and noncog-
nate amino acids, no conclusions can be drawn with respect to phylogenetic dif-
ferences in AARS loading fidelity. Data on the rate of mischarging of tRNAs (by
inappropriate AARSs) are scant, but the few available estimates are of order 10−3

per tRNA (Yadavalli and Ibba 2013; Shepherd and Ibba 2014). Thus, given the
sum of known AARS and tRNA misloading rates, it appears that the potential for
translation error even before a transcript meets a ribosome is far higher than the
transcript-error rate. Additional errors in translation will arise at the level of codon
reading, although the only detailed estimates are for E. coli,, which fall in the range
of 10−7 to 10−4 (Zhang et al. 2016). Thus, 10−3 would appear to be the lower limit
to the total error rate per codon for the species that have been examined.

Several attempts have been made to estimate the total rate of amino-acid mis-
incorporation into protein (which summarizes the net consequence of errors in all
preceding steps, including transcription). As it is not easy to sequence single amino-
acid chains, such studies have often been performed with target genes that do not
encode a particular amino acid, and then searching for the incidence of that amino
acid in synthesized proteins. In other cases, genes have been engineered to pro-
duce defective products unless a particular codon is misloaded by a specific amino
acid, with the degree of rescue providing insight into the specific error rate at that
one codon. As both of these methods are limited with respect to the amino-acid
misloadings that can be detected, to obtain the total translation-error rate, correc-
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tion needs to be made to account for the likely errors involving all amino acids not
monitored (Foundations 18.1). There are potential biases associated with such cor-
rection, but with these caveats in mind, average in vivo translation-error estimates
(per codon) fall in the range of 0.005 to 0.017 (Table 18.1), substantially greater
than the AARS-misloading rates.

A rough check on these numbers can be acquired from observations on another
type of translational error – misreading of a termination codon as a sense codon
(Parker 1989). Typically, such studies monitor the expression of reporter constructs
containing premature termination codons that completely abrogate gene function
unless experiencing read-through. The read-through error rate is then estimated as
the fraction of gene expression relative to that for an intact gene copy. Although
there can be substantial variation in the read-through rate depending on the local
context of the nonsense codon, most studies average over several such sites, with
reported rates of nonsense-codon misreading ranging from 0.003 to 0.011 (Table
18.1).

Thus, despite the uncertainties involved, the translation-error rate per codon
appears to be on the order of 10, 000× greater than the transcript-error rate per
nucleotide site. This means that only a small fraction of errors at the protein level
are associated with transcription. Assuming an average translation-error rate of
0.01 per codon, a newly synthesized protein of moderate size of 300 amino acids
would contain an average of three erroneous amino acids, and assuming a Poisson
distribution of errors, only a fraction e−3 = 0.05 of proteins of this size would be
error free. For large complexes, such as the ribosome involving ∼ 10, 000 amino acids
summed over all subunits, essentially every composite structure would be expected
to contain errors.

The implications here are that within a population of genetically uniform cells,
each cell will harbor a statistically and transiently unique distribution of variants
for most proteins. Recalling Equation 2.2a, which predicts the numbers of pro-
tein molecules within cells, and again assuming an average of 300 amino acids per
protein, a bacterial-sized cell of ∼ 1 µm3 is expected to contain ∼ 5 × 106 protein-
sequence errors. Average protein lengths are more on the order of 500 amino acids
in eukaryotes, so a yeast-sized cell of ∼ 100 µm3 can be expected to harbor ∼ 6× 108

errors, and a moderate sized eukaryotic cell of ∼ 105 µm3 would harbor ∼ 4 × 1010

errors.

Biophysical Limits to Substrate Discrimination and the Cost of Proof-
reading

As in any cellular process, there are two potential limits to which a level of molec-
ular perfection can be approached. The biophysical barrier represents the ultimate
limits that could be achieved by a supreme biochemist, capable of constructing lim-
ited only by diffusion limitations and energetic features of various substrate-binding
mechanisms. The evolutionary barrier is the boundary set by the degree to which
random genetic drift reduces the efficiency of natural selection. The issues associated
with each of these barriers are considered in the following two sections.

Errors arise during transcription and translation as statistical consequences of
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random diffusion and attachment of alternative substrates to catalytic sites, with the
frequencies of usage depending on the relative concentrations and binding affinities
involved. As the binding affinities of two alternative substrates become arbitrarily
close, both substrates would be equally likely to bind to the enzyme provided the
substrate concentrations are the same, although with unequal concentrations com-
petitive binding trend towards favoring the more abundant substrate. As the differ-
ence in binding energies increases, the relative rate of an enzyme engaging with an
inappropriate substrate declines exponentially. These issues can be addressed more
formally as follows.

Under a simple competitive binding situation, the limit to accuracy can be
formally evaluated for two competing Michaelis-Menten reactions by considering the
ratio of rates of engagement with incorrect (W) and correct (R) substrate molecules
(Foundations 18.1),

E =
[W]
[R]
· kd,R

kd,W
, (18.1a)

where the first term represents the ratio of substrate concentrations, and the second
term is the ratio of dissociation constants. The latter are functions of the bind-
ing energies between substrates and enzyme, and their ratio can be represented
in statistical-mechanic terms relative to the background energy of the system (see
Foundations 2.3; and pp. 1011-1016 in Phillips et al. 2013),

E =
[W]
[R]
· e−∆E/(kBT ), (18.1b)

where ∆E is the difference of binding strengths involving correct and incorrect sub-
strate molecules, kB is the Boltzmann constant (Chapter 2), and T is the tempera-
ture in degrees Kelvin. The actual error rate (the fraction of incorrect reactions, ε)
is equivalent to E/(1 + E), which is essentially the same as E provided E � 1. As-
suming that this condition is met and that concentrations of alternative substrates
are equal,

ε ' e−∆E/(kBT ). (18.2)

To gain an appreciation for the biological limits to accuracy under simple com-
petitive binding, note that most enzymes bind their specific substrates with energies
in the range of 12 to 24 kBT (Kuntz et al. 1999). The strength of a single hydrogen
bond, 5 to 15 kBT depending on the context (Fersht 1999), puts this in perspec-
tive, as a G:C pairing involves three hydrogen bonds, whereas an A:T pairing in-
volves two. It then follows that binding-strength differentials between preferred and
nonpreferred substrates (∆E) are generally smaller than ∼ 10 kBT , rendering most
biological processes to be error-prone. For example, taking 2 or 5 kBT to be binding-
energy differences between two substrates yields error rates of ε ' 0.13 and 0.007,
respectively, whereas extreme differences of 10 and 15 kBT still yield ε ' 5 × 10−5

and 3× 10−7, respectively. Even the latter is substantially higher than known DNA
replication error rates (Chapter 8), showing that replication fidelity must involve
processes beyond simple single-step competitive binding of alternative nucleotides
to single-stranded DNA.

Hopfield (1974) and Ninio (1975) realized how a simple deviation from linear
Michaelis-Menten enzyme kinetics can lead to a dramatic amplification in enzyme
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fidelity (Foundations 18.1). The key point is that if an enzyme can pause long enough
for substrate molecules to dissociate before completing a reaction, this opens the
opportunity for the repeated interrogation of a population of alternative substrates.
Molecules that are less likely to dissociate before conversion to the final product
will then be utilized more frequently. However, this path to increased accuracy
comes at a cost, as all known proofreading processes consume energy in the form of
ATP or GTP hydrolyses. For example, an ATP hydrolysis is required each time an
amino acid is attached to an AARS, and this must be repeated whenever a substrate
molecule is rejected prior to tRNA attachment.

This energetic cost to proofreading was first shown directly without any de-
tailed knowledge of the underlying mechanism. For example, Hopfield et al. (1976)
considered an in vitro system involving the transfer of either isoleucine or valine
to the isoleucine tRNA via isoleucyl-tRNA synthetase. When isoleucine was the
sole substrate, 1.6 ATP hydrolyses occurred per charged isoleucyl-tRNA (implying
that a correct substrate molecule is examined 1.6 times prior to permanent attach-
ment), whereas 270 ATPs were consumed per charged tRNA when only valine was
presented. These results suggest an error rate of ∼ 1.6/270 = 0.006 resulting from
the differential rejection of the two residue types. In additional work, Yamane and
Hopfield (1977) found that 25 to 40 ATPs are consumed when properly charged
AARSs are forced to deliver an amino acid to a noncognate tRNA, implicating
energy-consuming proofreading at the tRNA stage. Finally, when properly charged
tRNAs encounter inappropriate codons, GTP is hydrolyzed, implicating additional
proofreading at the codon-anticodon recognition step on the ribosome (Thompson
and Stone 1977; Yates 1979).

In a more general analysis of the energetic cost of proofreading, Andersson et
al. (1986) found that hyper-accurate ribosomes in E. coli require about twice the
number of GTPs to produce a peptide bond as in wild-type cells, presumably as a
consequence of the increased number of rejection cycles per accepted amino acid.
Likewise, Muzyczka et al. (1972) found that bacteriophage DNA polymerases with
mutations in their proofreading domains hydrolyzed more or less nucleotides relative
to wild-type when they were antimutators vs. mutators.

One can view the energetic cost of proofreading at two levels: the baseline cost
of multiple interrogations of correct substrate molecules; and the additional cost
incurred by engaging with inappropriate substrates. As an example of the first cost,
consider the prior example in which 1.6 ATP hydrolyses are experienced per correct
substrate molecule. This implies an intrinsic cost of proofreading of 0.6 ATPs per
residue incorporated, as just 1 ATP would be consumed if the preferred substrate
was never rejected.

The total energetic cost of erroneous substrate removal cannot be inferred with-
out a detailed knowledge of the relative concentrations of alternative substrates and
their kinetic coefficients. However, a rough idea can be gained by noting that the
rate of amino-acid misloading is approximately equal to the reciprocal of the aver-
age number of cycles through the proofreading system per loading event, whereas
the cost (in ATP hydrolyses) per misloading is equal to 1 ATP per cycle. This
suggests that the energetic cost of proofreading may be largely independent of the
relative binding energies of alternative substrates, as noncognate substrate molecules
that bind with affinities closer to those of the cognate substrate are advanced more
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rapidly through the system, and consume less ATP in doing so.
As an explicit example following from the preceding paragraph, assuming equal

concentrations of isoleucine and valine molecules within the cytosol implies an ad-
ditional consumption of 0.006 · (270 − 1.6) = 1.6 ATP molecules per fixed valine,
i.e., a doubling in ATP consumption relative to the situation in which valine is the
only substrate. The total cost of proofreading by this particular AARS is there-
fore approximately three-fold (∼ 3.2 ATP hydrolyses per amino-acid incorporation,
as opposed to 1.0). These observations imply that the evolution of proofreading
mechanisms, which arose very early in cellular evolution, imposed an energetic cost
equivalent to at least a doubling or tripling in the consumption of ATP molecules
for each proofreading step involving DNA/RNA transactions.

From Chapter 3, the cost of building a cell scales nearly linearly with cell volume,
averaging ∼ 27V billions of hydrolyzed ATPs (where V is cell volume in units of
µm3), whereas from Chapter 2, the number of protein molecules (in millions) per
cell is ' 1.6V . Assuming 400 amino-acids per protein (an approximate average over
prokaryotes and eukaryotes), two ATPs consumed by proofreading per amino-acid
incorporation, and ignoring protein turnover, the fraction of a cell’s total growth
budget allocated to proofreading is ∼ 5%. Using a rather different approach, and
earlier, less certain numbers, Savageau and Freter (1979) obtained an estimate of
2%. These are rough estimates, but even if somehow overestimated by a factor of
ten, it is clear that surveillance at the level of translation consumes a substantial
fraction of a cell’s energy budget. In principle, there are no limits to the level of
accuracy that can be achieved by kinetic-proofreading mechanisms (Foundations
18.1), but each increment in accuracy will involve additional energetic costs on the
cell, hence reducing cellular rates of reproduction.

Foundations 18.1. Kinetic proofreading. Numerous cell biological processes,
including DNA replication and mRNA translation, involve proofreading steps. As first
suggested by Hopfield (1974) and Ninio (1975), such processes exploit weak binding
energies and the even smaller differences between correct and incorrect substrates to
repeatedly interrogate bound substrates until passing them on to the next biochemical
stage. in principle, there are no limits to the level of accuracy that can be achieved by
such mechanisms, but any increase in accuracy comes at the cost of increased reaction
times and energy consumption.

To gain an appreciation for the mechanisms by which proofreading can lead to a
quantum leap in accuracy, we first consider the null situation in which two alternative
substrates are engaged in the same Michaelis-Menten reaction (Chapter 17), albeit
at different rates. The correct and incorrect substrates will be designated R (right)
and W (wrong) or as X when nonspecified, with both being processed by the same
enzyme E. Recall that under the Michaelis-Menten model, before the final product
is arrived at, an enzyme-substrate complex EX is formed (Figure 18.2), which then
either returns to the prior state by dissociation or proceeds to product formation, at
rates kd,X and kcat,X, respectively.

The rate of production of the correct intermediate is ka,R[R], where the brackets
denote concentration, and once formed the intermediate is converted to final product
with probability λR = kcat,R/(kd,R + kcat,R), with similar expressions following for the
incorrect substrate. Provided the error rate is� 1, it will be very closely approximated
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by the ratio of the forward rates for the incorrect and correct products (see text),

ε =
ka,W · λW · [W]
ka,R · λR · [R]

, (18.2.1a)

which can be seen to depend on ratios involving both substrate concentrations and ki-
netic coefficients. Removal of the extrinsic effect of concentration yields the error rate
under the assumption of equal concentrations of the two substrates, and further sup-
posing the association rates of the two substrates to be the same, which is reasonable
if encounters are based on diffusion of two similar sized particles,

ε =
kcat,W · (kd,R + kcat,R)
kcat,R · (kd,W + kcat,W)

. (18.2.1b)

If the catalytic rates greatly exceed the dissociation rates, the error rate may be high
enough to violate the assumption of the preceding derivation, but will approach

ε ' kcat,W

kcat,R + kcat,W
. (18.2.1d)

which is equal to one half when the two catalytic rates are equivalent. On the other
hand, if the dissociation rates are large relative to the catalytic rates, and again as-
suming the latter are equivalent for both substrates, Equation 18.2.1b reduces to the
ratio of dissociation rates,

ε ' kd,R

kd,W
. (18.2.1e)

This is the limit to what can be achieved by an enzyme that discriminates solely on
the basis of the sticking times (the inverse of the dissociation rates) of the substrates.

Now consider the situation in which a proofreading step is inserted into the
previous scheme, designating this as the creation of a secondary complex EX∗ from EX
at rate mX . Under such conditions, the secondary complex is rejected and returned
to state EX with decay rate kd∗,X (Figure 18.3). This has the effect of creating a
recurrent loop in the progression of a substrate molecule to the final-product step, with
the number of excursions back to EX depending on the magnitude of the dissociation
constant. The combination of repetitive interrogation and enhanced rejection of loosely
bound complexes leads to an amplification of the level of fidelity to the appropriate
substrate. A full exposition of the model can be found in Hopfield (1974) and Ninio
(1975), but to focus on the central point, the simplest case will be examined here –
the situation in which all rate coefficients are equal for both substrates except for the
dissociation constants.

The rate of production of product PX can be determined by first partitioning
the series of intermediate events into net rates / probabilities associated with four
subcategories,

λ1,X = kon[X] for E + X → EX (18.2.2a)

λ2,X =
m

m+ kd,X
for EX → EX∗ (18.2.2b)

λ3,X =
kd∗,X

kcat + kd∗,X
for EX∗ → EX (18.2.2c)

λ4,X =
kcat

kcat + kd∗,X
for EX∗ → E + PX (18.2.2d)
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The overall forward rate of production of PX can be summarized as the series

Λ1,X = λ1,Xλ2,Xλ4,X[1 + (λ2,Xλ3,X) + (λ2,Xλ3,X)2 + · · · ] (18.2.3a)

=
λ1,Xλ2,Xλ4,X

1− λ2,Xλ3,X
(18.2.3b)

Note that from the standpoint of the intrinsic error rate, λ1,X is irrelevant as kon is
the same for both substrates, so the ratio λ1,W/λ1,R = [W]/[R]. Again, factoring out
the concentration effect, the error rate is

ε =
λ2,Wλ4,W(1− λ2,Rλ3,R)
λ2,Rλ4,R(1− λ2,Wλ3,W)

, (18.2.4)

and substituting from above yields

ε =
mkcat + kd,Rkcat + kd,Rkd∗,R

mkcat + kd,Wkcat + kd,Wkd∗,W
(18.2.5a)

Comparison to Equation 18.2.1c shows that the key difference between the error-rate
function with an intermediate error-checking step is the presence of products of terms,
most notably of the dissociation constants associated with each substrate. If the
dissociation coefficients are large relative to m and kcat, and the ratios of coefficients
at both steps are the same,

ε '
(
kd,R

kd,W

)2

. (18.2.5b)

Thus, in the limiting case, a proofreading step can reduce the error rate down to the
square of that expected in the absence of proofreading.

Finally, we can inquire as to the average number of intermediate steps that
are cycled through before reaching the final product (nc). Expanding from the logic
underlying Equation 18.2.3a,

nc =
∞∑
i=1

i · (λ2,Xλ3,X)i−1

=
1

[1− λ2,Xλ3,X]2
(18.2.6a)

For the limiting case in which the dissociation coefficients are large relative to the
other rates,

nc '
1

[1− (m/kd∗,X)]2
. (18.2.6b)

The specific results noted above, which make various assumptions about the
equality of some pairs of rates for R and W substrates and relative magnitudes of
different classes of coefficients, lead to a maximum level of error reduction. More
general formulae can be found in Hopfield (1974), Ninio (1975), and Murugan et al.
(2012). By increasing the number of steps from substrate to final product, all other
things being equal, proofreading will in general increase the reaction time, although
it is unclear whether this is a limiting factor with respect to cell-division time, which
depends on many other processes operating simultaneously. Moreover, it can be shown
that an increase in proofreading rates (which in part influence the overall reaction
time) can lead to an increase in both reaction speed and accuracy (by promoting
correct substrates more rapidly to the final product before dissociation) (Banerjee et
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al. 2017), so it is not inevitable that there is a tradeoff between speed and accuracy,
contrary to common view (Johansson et al. 2008; Wohlgemuth et al. 2011). Rather,
the directionality of this relationship depends on the full set of parameters in Figure
18.3, some of which are jointly favorable for both traits and others of which are not.

The Limits to Selection on Error Rates

Although an increase in phenotypic errors can have clear negative fitness conse-
quences, natural selection has not driven error rates down to their biophysical limits.
The substantial room that exists for improvement in translational fidelity is amply
revealed by the fact that hyperaccurate ribosomes are readily obtained in microbial
systems (Gorini 1971; Piepersberg et al. 1979; Bouadloun et al. 1983; Andersson et
al. 1986; Zaher and Green 2010). Mikkola and Kurland (1992) found that natural
isolates of E. coli have a ten-fold range of translation-error rates, bracketing the
values found for long-established lab populations. Although they found no corre-
lation between the growth rates and translation accuracies of different strains, this
is perhaps not surprising given the difficulties of measuring growth rates to a high
degree of resolution. Wild-type E. coli grow more rapidly than those with hyper-
accurate ribosomes at high-nutrient levels, but growth rates are approximately the
same under low-nutrient conditions that may more closely reflect the natural state
(Andersson et al. 1986).

Why has natural selection not been able to reduce transcript and translation
error rates to the levels observed for replication? One obvious difference here is that
genomic errors remain associated with mutator alleles until separated by recombina-
tion, whereas transcription and translation errors are transient. In bacteria, the half
lives of individual transcripts are typically 5 to 10 minutes, well below cell-division
times (Bernstein et al. 2002; Hambraeus et al. 2003; Taniguchi et al. 2010; Dressaire
et al. 2013). In S. cerevisiae, mRNA half lives are on the order of 10 to 20 minutes
(Wang et al. 2002; Neymotin et al. 2014), and they can be a few hours in mouse cells
(Schwanhäusser et al. 2011), again shorter than the time necessary for cell division.

It need not follow, however, that the damage from transcript errors is quickly
erased. For one thing, proteins have considerably longer half lives than mRNAs.
More importantly, the rate of molecular turnover need not have much of a bearing on
the cellular load of errors at all. Rather, a roughly steady-state density of erroneous
transcripts can be expected within the cellular environment, reflecting a balance
between the decay of old mRNAs and the transcriptional production of new ones,
and the same will be true of proteins. Thus, regardless of the transience of individual
errors, one can expect a relatively constant number of total errors per cell (at both
the transcript and translational levels). For each expressed gene, the total expected
number of errors per cell at steady state will simply equal the product of the error
rate per codon, the number of codons per mRNA, and the total number of mRNAs
(for transcript errors) or protein molecules (for translation errors).

On the other hand, although the total number of errors in a cell must increase
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with the number of molecules, the fitness effect of any single error in a particular
protein may be diluted out with increasing numbers of copies of the protein free of
the specific error. The setting for phenotypic mutations is fundamentally different
than that for genetic mutations, which are either fully expressed (in haploids or
homozygous diploids), or 50% expressed in diploid heterozygotes (assuming addi-
tivity). As a consequence, for a gene with a steady-state number n of transcripts or
proteins, the phenotypic manifestation of error expression will be a function of the
product of the number of transcripts (proteins) and a dilution factor, φ(n) (Founda-
tions 13.2). In the case of additivity, the dilution factor is simply 1/n, and the net
effect of errors is independent of the number of molecules per cell.

To obtain the total burden of errors on fitness, we require the total number of
erroneous amino acids within proteins, each discounted by the dilution effect. Let p
be the number of expressed protein-coding genes, L be the mean number of codons
per protein, and u be the number of errors per codon (which is the translation error
rate in the case of proteins, and roughly twice the transcript-error rate for mRNAs
owing to the redundancy of the genetic code). The expected number of erroneous
amino acids incorporated into proteins by a particular route is then upLn. Further
letting δ be the average reduction in fitness if a mutation were to be fully expressed
(as in an encoded genomic error in a haploid organism), the total reduction in fitness
associated with a particular type of error is upLnφ(n)·δ. This further implies that the
absolute value of the selection coefficient associated with a modifier of the transcript-
or translational-error rate scales with pLnφ(n) · δ or just pLδ if the dilution factor is
1/n.

As in the case of replication fidelity, theory also suggests that selection on
transcript and translational fidelity should scale approximately inversely with the
effective size of a population (Ne), as 1/Ne dictates the power of genetic drift (and
hence the efficiency of selection) (Foundations 13.2). If this general theoretical
framework is correct, we then expect u to scale inversely with Ne · pLnφ(n) · δ, or
more simply as Ne · pLnφ(n) provided δ is fairly constant across species. Because
all of the underlying cellular factors can covary with each other, as well as with Ne,
no simple scaling with single parameters is likely to emerge, and as can be seen in
Table 18.1, there is no immediately obvious phylogenetic patterning associated with
the transcript-error rate.

However, a composite analysis is consistent with the expected scaling. From
Chapter 2, we know how the number of molecules n scales with cell volume, and also
have information on the coefficient of variation of n, which enters φ(n) (Foundations
13.3). Estimates of p and L are generally available from genome sequencing data, and
Ne from population-level polymorphism data (Chapter 8). For the five species for
which data are available for these parameters along with measures of the transcript-
error rate, the latter is seen to scale negatively with the composite parameter Ne ·
pLnφ(n) (Figure 18.4). With this limited number of taxa, a simple model in which
the dilution factor is 1/n cannot be rejected, but the slope of the overall regression
is much shallower than the expectation of −1, either simply because of inadequate
taxon sampling or because some aspect of the model is adequate.

The central point is that even with relentless selection to improve transcrip-
tional and translation fidelity, error rates are expected to become stalled at high
levels owing to their small phenotypic effects and the reduced efficiency of selection
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operating at the drift barrier. This is not to say that an erroneous transcript or
protein molecule cannot occasionally (and stochastically) yield a transient benefit
in an extreme environment, but it does argue that such errors are little more than
by-products of the limits to natural selection.

Finally, another suggested contribution to the evolution of high transcription
and translation error rates is the cost of kinetic proofreading (Ehrenberg and Kur-
land 1984a). The idea here is that whereas increasingly accurate transcription and
translation should improve cellular health, these advantages might become offset
by the bioenergetic costs of proofreading, which generally consumes ATP. Under
this view, either too high an error rate or too high a level of accuracy would lead
to reduced fitness, motivating the idea that the fidelity of transcription / trans-
lation is kept at some intermediate optimal state by natural selection (Ehrenberg
and Kurland 1984a,b; Kurland and Ehrenberg 1987). However, such optimization
would only be possible if the supposed optimum error rate were higher than the
drift barrier, else the latter would take precedence (Figure 18.5). Another implicit
assumption in this argument is that increases in accuracy can only be achieved via
proofreading improvement rather than through modifications of the basic efficiency
of the pre-proofreading steps in transcription and translation. Finally, this cost
argument does not explain the phylogenetic range in error rates. The evolution-
ary consequences of proofreading will be viewed in an entirely different light in the
following section.

Foundations 18.2. The evolutionary bounds on the transcription-error
rate. Given that natural selection relentlessly promotes the sequences of protein-
coding genes toward their optimal state, it is reasonable to assume that most errors
in transcripts are deleterious. Here, we consider the expected selective advantage of a
genomic variant that improves transcriptional fidelity (or conversely the disadvantage
of a variant that exacerbates the transcript-error rate). With slight modifications, the
same approach can be used to ascertain the magnitude of selection operating on a
variant that influences the translation-error rate. To achieve such an understanding,
several factors must be considered: 1) the expected number of errors per molecule
produced (transcript or protein) manifest at the amino-acid sequence level; 2) the to-
tal number of molecules associated with each gene; and 3) the fitness effects of such
errors.

Letting u be the rate of amino-acid misincorporation per codon, and Li be the
number of amino acids in a protein of type i, the numbers (j) of erroneous amino acids
in individual protein molecules of this type will be Poisson distributed with expectation
uLi,

P (j|uLi) =
e−uLi(uLi)j

j!
. (18.2.1)

From the standpoint of translation errors, u is defined to be the error-rate per codon,
whereas if µ were to be the transcription-error rate per nucleotide site, because there
are 3 nucleotide sites per codon, and ∼ 3/4s of nucleotide substitutions cause an
amino-acid substitution, u ' 3µ · (3/4) = 9µ/4.

Although all products of an error-containing gene will themselves contain the
error, transcription and translation errors are singular events, and individual variant
proteins will generally be just a fraction of the total pool of molecules for specific
genetic loci. This raises the question of the degree to which the fitness effects of
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single molecules are manifest at the cellular level. As with variant alleles at a locus,
transcription and translation errors might behave in an additive, recessive, or dominant
fashion, with the magnitude of the latter two conditions depending on the number of
molecules per cell. Letting ni be the number of molecules per cell for protein i, a
flexible function that allows for alternative modes of dilution of effects is

f(ni) =
1
nxi
, (18.2.2)

which equals 1.0 when ni = 1 (effects are fully felt), and converges to 0.0 (effects are
completely masked) as ni →∞ at a rate that depends on the exponent x. When x = 1,
f(ni) = 1/ni, and the number of copies of a protein has no effect, as the number of
error-containing proteins, which is proportional to ni, is compensated by the dilution
effect, i.e., ni · f(ni) = 1. Values of 0 < x < 1 result in a relatively slow decline in the
dilution effect with increasing ni (with x = 0 implying complete dominance of errors),
whereas x > 1 results in a relatively rapid decline in f(ni) (i.e., relatively recessive
effects of errors).

From Chapter 8, the average reduction in fitness associated with fully expressed
deleterious mutations is generally < 0.1, and based on known transcription- and
translation-error rates and typical gene lengths, the number of errors per protein will
generally be � 10. Thus, letting δ be the fitness loss per single error in a single
molecule if fully revealed, unless there are very strong epistatic effects, the total re-
duction in fitness in a protein containing j errors can be closely approximated as
jδ ' 1− e−jδ.

For each locus i, the expected fractional reduction in fitness associated with the
error burden (si) will then depend on the number of proteins per cell over which the
errors are distributed, ni, the degree of expression of individual errors, f(ni), and the
distribution of the numbers of errors per protein P (j|uLi),

si = ni · f(ni) ·
Li∑
j=1

P (j|uLi) · (1− e−jδ), (18.2.3a)

' ni · f(ni) ·
[
1− exp

(
− uLiδ

1 + δ

)]
. (18.2.3b)

Further simplification is possible by assuming independent ni and Li, ignoring varia-
tion in protein length, and noting that δ and uLiδ � 1,

si ' ni · f(ni) · (upL) · δ, (18.2.3c)

where p denotes the number of protein-coding loci in the proteome.
Equation 18.2.3c shows that the fitness consequences of mistranslation are a

simple function of three quantities: 1) the total mistranslation rate per expressed
proteome (upL); 2) the net effect of the steady-state numbers of proteins per gene
(the middle term, which is the product of copy number and dilution effect); and 3)
the average effect of an amino-acid substitution if fully expressed (δ).

Finally, we require an expression to map the entire burden of errors throughout
the proteome to cell fitness. As the average fitness effects of single errors in individual
proteins will generally be � 0.1, we will assume the effects of errors arising at each
genetic locus to act independently, such that total mean fitness can be denoted as

W (u) =
p∏
i=1

(1− si) ' exp

(
−

p∑
i=1

si

)
, (18.2.4)
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where the approximation follows from si � 1. The quantity [1 −W (u)] defines the
fractional selective disadvantage of error rate u relative to the situation in which u =
0. The difference in this quantity for two alleles resulting in error rates u1 and u2,
[W (u1)−W (u2)], provides a measure of the selective advantage of the first allele over
the second.

As noted in Chapter 8, the magnitude of a selection coefficient dictates the
capacity for natural selection to improve a trait. For a haploid population with genetic
effective size Ne, as a first-order approximation, the absolute value of [W (u1)−W (u2)]
must exceed 1/Ne for natural selection to discriminate between alternative alleles. For
|W (u1) − W (u2)| < 1/Ne, drift overwhelms the power of selection, and hence this
point is referred to as the drift barrier. Thus, letting ∆ denote the fractional decline
in the translation-error rate between consecutive states in a hierarchy of mutationally
connected alleles with effects on the error rate, the drift barrier is the error rate u∗
that satisfies

Ne =
1

W [(1−∆)u∗]−W [u∗]
. (18.2.5)

For u > u∗, natural selection is capable of driving the error rate to a lower value,
whereas a situation in which u < u∗ is expected to be transient as selection is unable
to maintain such a state.

Rearranging, and substituting from above, the lower-bound to the error rate
achievable by selection is

u∗ ' 1
∆ ·Ne · pL · nφ(n) · δ

. (18.2.6)

where φ(n) = {1− [x(1−x)C2
n/2]}/nx is the average dilution factor, with Cn denoting

the mean and coefficient of variation in expression level (obtained by Taylor-series
expansion of Equation 18.2.2). This shows that, all other things being equal, there is
an expected inverse relationship between Ne and the drift barrier. However, there is
also an inverse scaling with the total number of codons in the proteome pL, the copy-
number effect nφ(n), and the average fitness effect of mutations δ. The granularity
of mutational changes in alleles influencing the error rate (∆) operates as a simple
scaling factor, but does not change the form of the relationship – the higher the value
of ∆, the greater the difference of allelic effects, and hence the greater the efficiency
of selection for a lower error rate.

The Evolutionary Consequences of Proofreading

As noted above, the accuracy-demanding processes of replication, transcription,
and translation all involve layers of mechanisms that improve fidelity. For example,
genome replication involves highly selective DNA polymerases, with the small frac-
tion of resultant base misincorporations being subject to correction by subsequent
proofreading, and the still smaller fraction of errors that escape proofreading being
subject to mismatch repair.

The subset of erroneous transcripts either missing the translation start or termi-
nation site or containing premature termination codons can be removed by mRNA
surveillance mechanisms that occur after the initiation of translation. These in-
clude: the nonsense-mediated decay (NMD) pathway, which eliminates a fraction
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of inappropriate mRNAs carrying premature termination codons (PTCs); no-go de-
cay, which degrades mRNAs associated with stalled ribosomes; and non-stop decay,
which removes mRNAs lacking a stop codon (Graille and Séraphin 2012; Kervestin
and Jacobson 2012).

The central point is that some fraction of erroneous mRNAs is removed from
the cell in the very first round of translation, and this may help explain why in vivo
transcript error-rate estimates are lower than those obtained by in vitro methods,
which exclude translation-associated processes. Notably, many of these surveillance
mechanisms are present only in eukaryotes, or are substantially elaborated in the
eukaryotic lineage. Eukaryotes also have a quality-control pathways for removing
nonfunctional ribosomal RNAs and transfer RNAs, which are apparently absent
from prokaryotes (LaRiviere et al. 2006; Kramer and Hopper 2013).

The eukaryotic NMD process is associated with spliceosomal introns, which are
unique to eukaryotes (often exceeding an average of five per protein-coding gene)
and must be spliced out of precursor mRNAs to produce productive transcripts prior
to translation. Failure to remove an intron, which may be the most common mode
of production of erroneous transcripts, will lead to a downstream frameshift two-
thirds of the time, which will in turn usually lead to the appearance of PTCs. If not
removed from the cytoplasm, such aberrant transcripts will yield truncated proteins,
which will generally be harmful to cell health. In general, the NMD process removes
such transcripts during their first round of translation, distinguishing erroneous from
true termination codons by use of information on the distance from the length of
the 3′ end of the transcript, including information laid down in the form of proteins
marking intron-exon junctions (Hentze and Kulozik 1999; Gonzalez et al. 2001;
Lykke-Andersen 2001; Mango 2001; Maquat and Carmichael 2001; Wilusz et al.
2001; Maquat 2004, 2006).

Not all PTC-containing mRNAs are detectable by the NMD process, but the
importance of NMD is illustrated by experiments in which the pathway has been
silenced, which show substantial increases in PTC-containing mRNAs, with greater
efficiency of removal of transcripts with PTCs near the 5′ end (Mendell et al. 2004;
Mitrovich and Anderson 2005; Gout et al. 2017). Knockouts of the NMD pathway
have small phenotypic effects in the yeasts S. cerevisiae and S. pombe (Leeds et al.
1992; Dahlseid et al. 1998; Mendell et al. 2000), moderate fitness effects in the
nematode C. elegans (Hodgkin et al. 1989), and lethal effects in mice (Medghalchi
et al. 2001). The enhanced sensitivity of multicellular species to NMD inactivation
may simply be a consequence of greater rates of production of erroneous transcripts
in complex genomes with more opportunities for splicing errors, although this con-
clusion is clouded by evidence that some of the proteins in the NMD pathway have
additional cellular functions (Maquat 2006).

The accuracy of translation also depends on a series of surveillance mechanisms
for proper loading of tRNA synthetases by their cognate amino acids, proper recog-
nition of tRNAs by their cognate synthetases, and proper codon recognition by
tRNAs, with all three steps incorporating proofreading mechanisms. It is common
to view such layered security systems as reflections of the extraordinarily creative
power of mutation combined with natural selection – once selection has brought a
particular mechanism to perfection, a second layer can emerge, yielding a quantum
leap in accuracy, with still other layers being subsequently added. Under this view,
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copying fidelity can be continuously pushed to higher and higher levels. Left unex-
plained, however, is the fact that eukaryotes, which have more elaborate surveillance
mechanisms for errors in DNA, RNAs, and proteins, nonetheless exhibit high net
error rates in all cases.

This view of ever-improving fidelity is likely incorrect. Suppose that prior to the
addition of a secondary line of defense, the primary mechanism is not constrained
by biophysical limits, but rather by the drift barrier. In that case, the fortuitous
addition of a second layer of defense (with a large enough immediate effect) might
lead to a larger boost in accuracy than possible under incremental changes made
to the primary mechanism, thereby vaulting over the prior limits to natural selec-
tion. However, the initial boost in accuracy need not be permanent, as incremental
reductions in the efficiency of both layers are likely to result in decay back to the
drift barrier, rendering the overall system no more accurate than the previous single-
layered system (Figure 18.6). The end result is a more complex and bioenergetically
expensive system, which superficially looks robust, but is in fact no more accurate
than the simpler ancestral state (Gros and Tenaillon 2009; Lynch 2012). Frank
(2007) called this phenomenon the “paradox of robustness.”

In effect, the combination of multiple lines of defense results in the relaxation of
selection on the efficiency of individual layers, and hence the eventual degeneration
of earlier established mechanisms. This is because natural selection operates on
the output of an entire system, leaving multiple degrees of freedom for change in
individual components so long as the summed level of efficiency remains at the drift
barrier. With two layers, the bivariate drift barrier will have a line of equivalence
with pairs of phenotypes on the line being equivalent with respect to overall accuracy
(Figure 18.6), and with three layers, there will be a trivariate drift barrier. Such
systems will be vulnerable to eventual loss of one component, provided such loss can
be compensated by improved performance in the other(s).

Observations on the mutational properties of microbes support for this view.
For example, although the elimination of mismatch-repair from E. coli, S. cerevisiae
and other organisms generally results in an ∼ 100-fold increase in the mutation rate,
Mycobacterium smegmatis, a bacterium lacking the mismatch-repair pathway, and
Deinococcus radiodurans, a bacterium in which mismatch repair only improves accu-
racy by a few fold, both have mutation rates similar to that in other microbes (Long
et al. 2015; Kucukyildirim et al. 2016). The fact that bacterial populations founded
with a mutator genotype frequently evolve lower mutation rates on relatively short
timescales through compensatory molecular changes at genomic sites not involved
in the initial mutator construct provides further evidence that individual fidelity
mechanisms are not limited by biophysical constraints (McDonald et al. 2012; Tur-
rientes et al. 2013; Wielgoss et al. 2013; Williams et al. 2013). Finally, different
yeast species with very similar mutation rates have substantial differences in their
mutation spectra, implying differences in the underlying mechanisms of mutation
and repair (Long et al. 2016).

From the standpoint of translational fidelity, one can also point to cases involv-
ing the fidelity mechanisms involving AARSs, the enzymes responsible for seques-
tering cognate amino acids prior to passing them on to their appropriate tRNAs.
Many AARSs are capable of post-transfer editing of mischarged tRNAs. However,
the PheRS in Mycoplasma mobile has lost the capacity to edit, and instead sim-
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ply relies on pre-transfer kinetic proofreading for discriminating against noncognate
amino acids (Yadavalli and Ibba 2013). Although this AARS is not sufficient to sup-
port E. coli growth, presumably owing to problems associated with mistranslation,
the introduction of just two amino-acid changes into the evolutionarily deactivated
editing domain removes this deficiency, increasing the level of accuracy by several
fold. Yeast (S. cerevisiae) cytoplasmic PheRS is capable of editing a tRNA mis-
charged with an erroneously transferred tyrosine, whereas the mitochondrial PheRS
is incapable of editing but nonetheless has a comparable error rate (Reynolds et
al. 2010). Thus, the accuracy of the latter is solely dependent on a high level of
initial specificity, which has apparently been displaced by post-transfer editing in
the cytoplasmic version. Many other examples are known in which tRNA-charging
accuracy depends on a mixture of pre- and post-transfer, with a switch to strong
reliance on just a single mechanism being conferred by no more than two amino-acid
substitutions (Martinis and Boniecki 2010).

Adaptive Significance of Errors

Given that the vast majority of amino-acid altering mutations have negative fitness
effects (Chapter 10), it is reasonable to expect the same to be true of translation
errors. Indeed, high translation-error rates are known to lead to malfunctioning cells
(Lee et al. 2006; Nangle et al. 2006; Bacher and Schimmel 2007; Schimmel and Guo
2009), and as noted above, the removal of the surveillance capacity for aberrant
mRNAs also causes fitness loss. By evaluating the growth rates of Salmonella cells
containing various mutations influencing translation fidelity, Hughes (1991; Hughes
and Tubulekas 1993) found that a ten-fold increase in the error rate generates a two-
fold reduction in growth rate. This growth-rate reduction was not a consequence
of reduced processivity of translation, but was shown by an enzyme reporter assay
to be associated with the production of erroneous proteins – a 3× increase in the
translation-error rate yielded a 40% reduction in enzyme activity and a 15% reduc-
tion in protein stability, with no associated change in protein abundance. Similarly,
in comparisons of the catalytic activities of two enzymes in wild-type E. coli with
those in a mutant line with enhanced translational fidelity, Musa et al. (2016) found
in both cases an ∼ 30% increase in enzyme activity in the latter case.

Despite these observations, following the grand tradition of assuming that ev-
erything biological must be optimized to maximize organismal fitness, a number of
authors have argued that translational errors have been wrongly viewed as deleteri-
ous (Peltz et al. 1999; Santos et al. 1999; Pezo et al. 2004; Bacher et al. 2007; Pan
2013; Ribas de Pouplana et al. 2014; Fan et al. 2015; Wang and Pan 2016). This
contrarian argument asserts that mistranslation is a regulated phenomenon, with
organisms “deliberately” making errors in order to expand the chemical diversity of
the cell. The view here is that there is an optimal intermediate level of mistransla-
tion, fine-tuned by natural selection to yield populations of variant molecules, some
of which will have fitness-enhancing functions. What drives this point of view?

First, if one engineers an E. coli cell line to be auxotrophic (unable to synthe-
size a particular nutrient) by introducing a missense mutation in a gene required
for the synthesis of the nutrient, an editing defective tRNA synthetase can rescue
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the line, presumably by promoting the production of a small fraction of proteins
with translation-error produced reversions to phenotypic function (Min et al. 2003).
However, such an extreme starting point provides little (if any) evidence for the
adaptive significance of error production, as auxotrophic mutants are expected to
be rapidly purged from populations by natural selection except in cases where the
nutrient is already freely available in the environment.

Second, it has commonly been observed that cells under stress have increased
translation-error rates. For example, in bacteria stressed with antibiotics and/or
oxidative damage, error rates can increase by 10 to 100× (Bacher and Schimmel
2007; Kramer and Farabaugh 2007; Javid et al. 2014; Fan et al. 2015; Leng et al.
2015). Methionine misacylation (i.e., the mischarging of non-methionine tRNAs
with methionine) is particularly common in stressful situations, with up to 10% of
incorporated methionine being erroneous in some conditions for mammalian, yeast,
and bacterial cells (Jones et al. 2011; Wiltrout et al. 2012; Schwartz and Pan 2017).
In the hyperthermophilic archeon Aeropyrum pernix, growth at low temperatures is
accompanied by global mischarging of leucine tRNAs by methionine AARS. It has
been argued that such conservation of a particular type of “misfunction” must imply
maintenance by natural selection as a mechanism for the adaptive exploitation of
errors (Netzer et al. 2009; Pan 2013; Schwartz et al. 2016).

In principle, widespread methionine misincorporation might yield advantages
beyond the direct effects on protein functions. There is, for example, biochemical
evidence that methionine residues can serve as scavengers for reactive oxygen species
via conversion to methionine sulfoxide (Levine et al. 1999; Stadtman and Levine
2003; Wang and Pan 2016), which would in turn protect the proteins containing
them. Moreover, a common enzyme (methionine sulfoxide reductase) confers the
ability to revert the modified base back to methionine, implying that such residues
can be recycled as antioxidants.

Nonetheless, these observations leave many questions unanswered. Although
methionine misincorporation can alter the properties of individual proteins in po-
tentially beneficial ways (Schwartz and Pan 2016; Wang and Pan 2015), this is not
a demonstration of an overall induced selective advantage, as the majority of such
variants at other loci are likely deleterious. If methionine serves such a useful func-
tion, then why is the cytoplasm not populated with higher free amounts of this
amino acid, and why are more methionines not directly encoded into the proteome?
There are no known disadvantages of methionine in nonstressful conditions.

Third, when cells are extremely starved for one particular amino acid, mischarg-
ing of the cognate tRNA synthetase can increase misincorporation rates by up to
an order of magnitude (Feeney et al. 2013), in some cases providing rescue from an
otherwise lethal situation. In Acinetobacter baylyi, for example, a mutation that
allows the isoleucine-AARS to mischarge with valine can increase the growth rate
when isoleucine is strongly limiting (Bacher et al. 2007). Should this be surpris-
ing, however, given the alternative outcome of no translation? In nature, a more
common situation would likely be generic shortage of all amino acids, which under
this view would call for global mischarging of all AARSs, an intracellular free-for-all.
Moreover, as discussed above (e.g., Equation 18.1a), utilization of inappropriate sub-
strates is expected to naturally increase whenever preferred substrates are relatively
rare.
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Fourth, some organisms, such as members of the genus Mycoplasma, have one or
more AARSs with editing defective domains (Li et al. 2011). The fungal pathogen
Candida albicans has experienced a reassignment of one particular leucine codon
(CUG) to serine (an alteration of the genetic code), but still incorporates 1 to
6% leucines at such codons (Rocha et al. 2011; Bezerra et al. 2013). This codon
ambiguity reduces fitness in normal environments, and induces the expression of
stress-response proteins, which can create a competitive advantage in stressful en-
vironments (Santos et al. 1999). Again, however, although rare accidents can oc-
casionally be useful, that does not mean that the proclivity to incur accidents is
promoted by natural selection. Notably, the organisms with intrinsically defective
translation efficiency are pathogens, which may be highly vulnerable to random
genetic drift and loss of nonessential functions.

In summary, although there is clear evidence that translation inaccuracy can
increase during times of stress, on occasion even stochastically creating protein vari-
ants capable of improving a precarious situation, there is a lack of direct evidence
that error-prone translation has been promoted by selection as a strategy for adap-
tively generating variant protein pools. When cells are stressed, cellular functions
go wrong, and there is no obvious reason why translation should be an exception.
Notably, the examples promoted as poster children of adaptive translation inaccu-
racy are highly idiosyncratic in that they involve different amino acids – leucine and
serine in the case of Candida, phenylalanine and leucine in the case of Mycoplasma,
asparagine and aspartate in the case of Mycobacteria, and methionine in the case of
E. coli, yeast, and mammals. There is no obvious reason why such lineage-specific
variation would be driven by specific phylogenetic adaptive requirements.

Finally, in one experiment imposing a selective challenge to evolve antibiotic
resistance, the rate of improvement was not enhanced by elevated translation error,
although there was some improvement in the evolved strains when later exposed to
some antibiotics that were not the source of the actual selection (Bratulic et al. 2017).
In a rather novel twist, these authors argue that mistranslation improves long-
term fitness not by providing stochastic short-term solutions to selective challenges
but by imposing epistatic effects that somehow magnify the effects of preexisting
deleterious mutations, hence enhancing the ability of natural selection to purge such
mutations from the population. Whether this is generally true remains to be seen.
But either way, it should again be realized that the existence of such an effect does
not provide evidence for the origin and maintenance of translational inaccuracy by
natural selection.
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Piepersberg, W., V. Noseda, and A. Böck. 1979. Bacterial ribosomes with two ambiguity mutations:

effects of translational fidelity, on the response to aminoglycosides and on the rate of protein

synthesis. Mol. Gen. Genet. 171: 23-34.

Proshkin, S., A. R. Rahmouni, A. Mironov, and E. Nudler. 2010. Cooperation between translating

ribosomes and RNA polymerase in transcription elongation. Science 328: 504-508.

Reynolds, N. M., J. Ling, H. Roy, R. Banerjee, S. E. Repasky, P. Hamel, and M. Ibba. 2010.

Cell-specific differences in the requirements for translation quality control. Proc. Natl. Acad.

Sci. USA 107: 4063-4068.

Ribas de Pouplana, L., M. A. Santos, J. H. Zhu, P. J. Farabaugh, and B. Javid. 2014. Protein

mistranslation: friend or foe? Trends Biochem. Sci. 39: 355-362.

Rocha, R., P. J. Pereira, M. A. Santos, and S. Macedo-Ribeiro. 2011. Unveiling the structural

basis for translational ambiguity tolerance in a human fungal pathogen. Proc. Natl. Acad. Sci.

USA 108: 14091-14096.

Santos, M. A., C. Cheesman, V. Costa, P. Moradas-Ferreira, and M. F. Tuite. 1999. Selective

advantages created by codon ambiguity allowed for the evolution of an alternative genetic code

in Candida spp. Mol. Microbiol. 31: 937-947.

Savageau, M. A., and R. R. Freter. 1979. On the evolution of accuracy and cost of proofreading

tRNA aminoacylation. Proc. Natl. Acad. Sci. USA 76: 4507-4510.

Schimmel, P., and M. Guo. 2009. A tipping point for mistranslation and disease. Nat. Struct. Mol.

Biol. 16: 348-349.
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