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8. EVOLUTIONARY SCALING LAWS
IN CELL BIOLOGY

1 September 2020

Cells vary widely in terms of shape, physiological properties, metabolic features,
and internal architecture. Of particular importance is cell size, which influences a
myriad of physical factors, ranging from nutrient uptake to internal transport, with
variation among species likely driven by a variety of selective forces, including size-
selective predators, buoyancy, resistance to flow dynamics, and osmotic pressure.
Among the most well-studied unicellular species, cell volumes vary by approximately
eleven orders of magnitude, 10−3 to 108 µm3, across the Tree of Life, with up to 107-
fold differences within major phylogenetic groups (Figure 8.1). By comparison, the
range in size between the smallest and largest mammals, a bumblebee bat vs. a blue
whale, is just eight orders of magnitude. On average, prokaryotic cells are smaller
than those of eukaryotic species, but some eukaryotes have cell volumes smaller than
the average bacterium.

There are a few striking exceptions at the large end of the scale not shown in
the figure. For example, the unicellular green alga Acetabularia is up to 10 cm in
length and contains just a single nucleus, but has a complex architecture similar to
that of a vascular plant. A multinucleate green alga Caulerpa produces complex
holdfasts, stalks, and fronds up to meters in length, despite being unicellular. Gro-
mia sphaerica, a testate amoeba that lives on marine sediments at depths of > 1 km,
produces cells up to 4 cm in diameter. There are also giant bacteria. The marine-
sediment bacterium Thiomargarita approaches 109 µm3 in size, and Epulopiscium,
a gut symbiont associated with surgeonfish, has a volume well over 106 µm3.

Cell size is a major organizing factor in biology, with a wide array of cellular
features scaling in predictable size-dependent manners across the Tree of Life. The
scaling relationships aren’t necessarily linear, but they often unfold in ways that
transcend the boundaries between major phylogenetic groups, even between bacteria
and eukaryotes. Such patterns are often called “laws of nature” or “rules of life,”
and if nothing else, they identify strict limits on what evolution has been able to
achieve in the natural world. The question is why? Are absentee combinations
of trait values a consequence of biophysical and/or biochemical constraints, or are
certain combinations simply too disharmonious to be promoted by selection, or do
both play a role?

The most notable of cell biology’s scaling laws, the ways in which bioenergetic
features relate to cell volume, constitute the primary subject matter of this chap-
ter, although numerous relationships for other types of traits will be explored in
subsequent chapters. The focus here is on the evolutionary scaling of traits with
size across species. There are equally compelling questions regarding scaling rela-
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tionships on nonevolutionary timescales (Marshall 2020), e.g., cellular responses to
nutritional status, temperature, and other physical/chemical factors. Ultimately,
we wish to know whether long-term evolutionary trajectories reflect within-species
developmental responses to the environment. These issues will start to be addressed
in the following chapter.

Before proceeding, a simple overview of the ways in which scaling laws are
expressed and interpreted mathematically is in order. Using this framework, a
number of general scaling relationships regarding energy acquisition and growth
will then be summarized. This will be followed by an overview of the possible
evolutionary mechanisms that have driven such patterns, and their implications for
understanding the consequences of the prokaryote-eukaryote transition.

Describing Allometric Relationships

The description of a scaling relationship between two traits demands a statistical
approach, as the twin goals are generally to quantify the average pattern and degree
of noise in the response of one trait that corresponds to a change in the other. The
relationship may be positive or negative, but provided a proportional change in
one trait is associated with a constant proportional change in the other, a scaling
relationship can be succinctly written in the form of a simple, two-parameter power
function,

z = αSβ + e, (8.1a)

where in this case z is the measured phenotype of interest, S is a measure of organism
size (usually mass or volume), α is a normalization constant (giving the expected
value of z when S = 1), and β is the scaling coefficient. Equation 8.1a indicates
that, on average, a two-fold change in S elicits a 2β-fold change in z. The e term
in Equation 8.1a is usually left out of such expressions (and will be from here on),
as it is a random deviation between observed and predicted values with an average
value of zero.

There is an elegant simplicity to power functions, as they exhibit linear form
when z and S are jointly transformed logarithmically. On a log scale, Equation 8.1a
becomes

log(z) = log(α) + β log(S), (8.1b)

providing a simple basis for estimating the parameters α and β with linear-regression
analysis. This linearity applies regardless of the logarithmic scale employed, e.g.,
to the base 10 as generally used here (denoted as log), or on the scale of natural
logarithms (denoted as ln). First popularized by Thompson (1917) and Huxley
(1932), power-function scalings in biology are generally referred to as allometric
functions, with β = 1 denoting an isometric relationship. If β is positive but < 1,
then z becomes proportionally smaller with increasing S, as z/S = αSβ−1, with the
exponent β − 1 being negative; this implies sublinear or hypometric scaling. In
contrast, β > 1 implies supralinear or hypermetric scaling.

As will be seen below, cell biology is well-endowed with features that are rea-
sonably described by Equation 8.1b as a first-order approximation. In principle,
although rarely relied upon, more complex functions are possible. For example, β



SCALING RELATIONSHIPS 3

could be a function of S. It should be noted, however, that the scales on which
biological traits are measured are generally arbitrary, and even when a particular
measure does not strictly adhere to the form of Equation 8.1a, a variety of math-
ematical transformations to a new scale can often lead to behavior consistent with
the simplest power-law form (Lynch and Walsh 1998; Frank 2016).

Regressions of trait values on body (cell) mass with slopes approximating mul-
tiples of 1/3 raise the possibility of simple geometric explanations. For example,
β = 1 suggests a mechanism directly proportional to the mass of cellular material,
β = 2/3 suggests a mechanism related to surface area (because area is a function of
the square and mass is a function of the cube of a length measurement), and β = 1/3
suggests a mechanism related to a linear dimension of the organism. As early inves-
tigators found numerous regression-coefficient estimates to be in the neighborhood
of x/3 (where x is an integer value, usually 2 or 3), there was a tendency to assume
they were exactly x/3 and then embark on generalized mechanistic explanations for
the observed patterns. Even at an early stage in these kinds of studies, discomfort
was expressed with the generality of various hypotheses (e.g., von Bertalanffy 1957),
although the tradition of searching for general scaling relationships and explanations
for them continues today, with a tendency to view significant deviations as annoying
secondary effects. As will be discussed below, for example, much attention has been
given to the idea that allometric coefficients are actually functions of x/4 rather than
x/3. In light of the usual uncertainties in statistical analyses, however, it is often
hard to justify one of these scalings versus the other. Is, for example, an estimated
coefficient of β = 0.29 more consistent with 1/3 ' 0.33 or 1/4 = 0.25 scaling?

Scaling Laws in Cellular Bioenergetics

The vast majority of work on biological scaling relationships has been performed by
ecologists striving to understand the basic energetic features of ecosystems, usually
with a focus on their constituent multicellular taxa (e.g., Burger et al. 2019; Hatton
et al. 2019). Our attention will be confined to the attributes of species that nor-
mally live as single cells. Nonetheless, as will be discussed in Chapter 25, there are
intriguing extensions of the results covered here to multicellular lineages.

Comparative studies across the Tree of Life have identified numerous power-law
scalings of biological features with cell size. Several such patterns were encountered
in Chapter 7 – the slightly less than linear proportionality between cell dry weight
and cell volume; the decline in the fractional contribution of DNA to total cellu-
lar biomass with increasing cell size; and the sublinear increase in the number of
molecules per cell with cell size.

Strong correlational patterns imply strong constraints, and a key challenge for
evolutionary cell biology is to determine their mechanistic basis. At least three non-
mutually exclusive classes of explanations always merit consideration: 1) inevitable
outcomes of biophysical / biochemical limitations; 2) consequences of evolutionary
channeling towards particular combinations of trait values that maximize fitness;
and/or 3) reflections of drift barriers beyond which the efficiency of selection is
compromised (Chapter 4).
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Metabolic rate. In any discussion of size scaling of biological traits, it is appro-
priate to start with metabolic-rate data, as no trait has been more widely measured
phylogenetically. In a statement that quickly became canonized as “Kleiber’s Law,”
Kleiber (1932, 1947) argued that the total metabolic rate of an organism (typically
measured as the rate of oxygen consumption) scales as the 3/4 power of body mass.
His original analyses were largely derived from observations on vertebrates, and
considerable subsequent research has led to a substantially altered view.

Nonetheless, West et al. (1997, 1999, 2002) have promoted the idea that quar-
ter power-law scalings constitute universal laws relevant to not just metabolic rate
but to a wide array of additional organismal features across the entire Tree of Life.
The novelty of their conclusions derives from the concept of fractal delivery systems
(e.g., hierarchical branching networks of capillaries or leaf veins) for nutrients and
respiratory gases, but the details of the underlying derivations will not be pursued
here for several reasons. First, it is unclear how the features of a branching delivery
network would apply to single cells. Second, a number of questionable mathemati-
cal assumptions underlying the fractal models have been highlighted (Dodds et al.
2001; Banavar et al. 2002; Koz lowski and Konarzewski 2004, 2005; Chaui-Berlinck
2006; Apol et al. 2008), which despite the originators’ valiant efforts (Brown et al.
2005; Savage et al. 2007) have not been dissipated. Third, comparative data in
protists yield a power-law relationship between cell surface area and volume with
an exponent quite close to 3/4 (Fenchel 2014), contrary to the naive expectation of
2/3. Such behavior is a consequence of cell shapes shifting to flatter forms as species
increase their average cell volumes. This means that, aside from the potential math-
ematical issues with the fractal-based model, the predicted scaling does not differ
uniquely from that of a surface-area constraint model.

The most significant issue here is that for metabolic rates, one general power
function does not apply across the Tree of Life. Not only is the allometric coefficient
for metabolic rate often unequal to 3/4, but the regression appears to be nonlinear
(Zeuthen 1953). With dry weight/cell being the measure of size, DeLong et al.
(2010) found the allometric slope for metabolic rate for heterotrophic bacteria to be
∼ 2.0 and for unicellular eukaryotes is ∼ 1.1, with the same scaling found whether
cells are active and well-nourished or inactive and starved. Using updated cell size
measurements from Lynch et al. (2020), the allometric slopes for the two groups
are more on the order of 1.3 and 1.0 (Figure 8.2), but the two estimates are not
significantly different (Figure 8.2). Thus, although there is little overlap in cell
sizes between the two groups, a hypothesis of complete continuity of scaling across
both groups cannot be ruled out, and this leads to the prediction of an isometric
relationship (with slope = 1.0). As these discrepancies with the 3/4 rule have been
made repeatedly in other studies (Dodds et al. 2001; Koz lowski and Konarzewski
2005; Glazier 2015a,b), it is unclear why the universality of 3/4 power-law scaling
continues to be promoted (West 2017).

Although metabolic rate is a classical physiological measurement, readily es-
timated as the rate of oxygen consumption or heat dissipation, its cell biological
interpretation is generally far from clear. Total metabolic-rate measurements quan-
tify the burning of carbon sources, but provide no information on the extent to
which energy is converted to biomass production (growth and reproduction), the
key targets of natural selection. Given the isometric relationship noted above, di-
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viding cellular metabolic rate by cell mass implies that the rate of energy utilization
per unit mass is essentially independent of size in unicellular species. Taken at face
value, assuming that metabolic rate is somehow proportional to the rate of biomass
production, this might suggest that cell-division rates would be nonresponsive to
cell size. As discussed further below, this expectation is not fulfilled.

Lifetime energy requirements of a cell. Natural selection advances adapta-
tions that enhance an organism’s energetic capacity, either directly via growth and
reproduction or indirectly via survivorship. However, adaptations themselves incur
baseline construction and maintenance costs, and unless the benefits are sufficiently
greater than the energetic costs, natural selection will be ineffective. To understand
the capacity of natural selection to incorporate adaptive modifications, we require
information on the net energetic costs and benefits relative to the total cellular en-
ergy budget (the summed costs of construction and maintenance per cell lifetime).
This ratio provides a measure of the degree to which a cellular modification can be
perceived by selection as opposed to being overwhelmed by the power of random
genetic drift and accumulating by mutation pressure (Chapters 6 and 17). Thus,
any evaluation of the relative cost of a genomic/cellular modification must start
with a consideration of the total cellular energy requirements per cell cycle.

These total cellular requirements partition into components associated with:
1) baseline maintenance and survival; and 2) production of the essential parts of
daughter cells (growth and reproduction). The numerous maintenance needs of a
cell include energy invested in mRNA and protein production and processing, os-
moregulation, intracellular transport, signal transduction, motility, and DNA repair.
As the length of the cell cycle is prolonged, e.g., owing to resource limitation, the
contribution of the maintenance requirement will grow approximately linearly with
the time between cell divisions, whereas the contribution involving the construction
of new parts (a roughly one-time investment) will remain approximately constant.
As a consequence, the total lifetime energetic requirements of a cell (from birth to
fission) will typically increase as growth conditions decline, eventually reaching the
break point where resources are just sufficient for maintenance (with nothing left
for allocation to reproduction).

A powerful approach that allows an empirical partitioning of maintenance and
growth requirements of an organism relies on estimates of the consumption rate of an
energy-limiting resource at different cell-division rates (Foundations 8.1). For cells
that can be grown on a defined medium in a continuous-flow chemostat (Figure 8.3),
the rate of resource consumption per cell can be estimated from the difference in
resource concentration between the inflow and outflow, the known cell density (which
reaches an equilibrium in the growth chamber), and the flow rate. Conversion of
resource consumption to ATP yield (the universal energy currency of cells) requires
knowledge of the metabolic pathways through which the substrate passes (Tempest
and Neijssel 1984; Russell and Cook 1995).

The elegance of a continuous-flow culture is that an equilibrium cell-division rate
is rapidly achieved, which is simply equal to the dilution rate of the chemostat. If
the rate of resource consumption per cell is determined at several cell-division rates,
a plot of the former vs. the latter is expected to yield a straight line, with the slope
providing an estimate of the amount of resource consumed to produce a new cell,
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and the intercept (denoting the point at which resource consumption is insufficient
to support growth) providing a measure of baseline metabolic requirements (Figure
8.3). Pioneered by Bauchop and Elsden (1960), this regression approach is often
called a Pirt (1982) plot.

The general procedure has been applied to enough organisms to reveal some
broad generalizations (Figure 8.4). First, the basal metabolic rate (normalized to a
constant temperature of 20◦C for all species) scales almost linearly with cell volume
across both bacteria and eukaryotes, with an allometric relationship of

CM = 0.39V 0.88, (8.2a)

where CM is in units of 109 molecules of ATP/cell/hour, and cell volume V is in
units of µm3. Second, the scaling of the growth requirement per cell is even closer
to linearity with respect to cell volume (i.e., with an exponent near 1.0),

CG = 26.92V 0.96, (8.2b)

where CG is in units of 109 molecules of ATP/cell. If one further considers that a
portion of eukaryotic cell volume is associated with vesicles and therefore relatively
inert biologically, the regressions on active (or “effective”) cell volumes might yield
modified allometric scaling coefficients. Unfortunately, little information is available
on the scaling of vacuolar volume with total cell size, although an analysis for pho-
tosynthetic cells suggests ∼ 89% active volume for a 1-µm3 cell, declining to ∼ 58%
in a 104-µm3 cell (Okie 2013). This matter aside, Equations 8.2a,b still provide a
highly useful quantitative statement on the cell-size dependence of maintenance and
construction costs. Notably, both the maintenance and growth relationships scale
in an apparently continuous fashion across bacteria and eukaryotes, despite the sub-
stantial difference in cell contents between the groups. On the one hand, eukaryotic
cells contain internal lipid membranes, which are energetically expensive, but on the
other hand, such cells are less densely packed with biomaterials (Chapter 7).

The total cost of building a cell is

CT ' CG + tdCM , (8.2c)

where td is the cell-division time in hours. The relationships in Equations 8.2a,b
then imply that provided td < 67V 0.1 hours (assuming 20◦C), the contribution from
cell growth dominates. The preceding relationships will prove useful in subsequent
chapters as we attempt to determine the costs of various cellular features relative
to a cell’s entire energy budget.

The speed limit on cell-division rates. Natural selection is based on genotypic
differences in rates of genome transmission on an absolute time scale. Thus, fitness
ultimately depends not just on the rate of resource acquisition, but on the rate
at which assimilated resources are transformed into new cells, as opposed to being
burned in nonproductive activities. Thousands of studies have been performed on
the growth rates of various species under a multitude of conditions, but given the
diversity of approaches, the only fair comparison is to evaluate maximum known cell-
division rates. Even then, the data must be normalized to a constant temperature
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(as the latter influences all aspects of biology; Chapter 7), and there is no guarantee
that studies on any particular species have indeed uncovered the optimal growth
conditions.

With these caveats in mind, a broad survey of the literature suggests that the
scaling of maximum cell-division rate and cell size (in units of dry weight per cell) is
qualitatively different between heterotrophic bacteria and eukaryotes (Figure 8.5a).
Here, the growth rate is measured as the maximum exponential rate of expansion
bmax = ln(2)/tD, where tD is the population doubling time (in days). For bacteria,
the scaling of this trait with cell size is positive with an allometric coefficient of 0.28
(SE = 0.07). Although there is considerable noise in the data, more than an order
of magnitude range of variation in cell-division times for any specific cell size, this
is in part due to sampling error. Moreover, even though the overall size range for
which data are available is limited, the data certainly do not support the idea that
large bacteria suffer from reduced rates of cell division, as might be expected if there
was a surface area:volume constraint (below).

In contrast, unicellular eukaryotes exhibit weak, negative scaling of maximum
growth rate with cell size. For amoeboid forms, ciliates, a broad group of het-
erotrophic flagellates, and dinoflagellates, the allometric scaling coefficients fall in
the narrow range of -0.19 to -0.22. Despite this uniform size scaling over six or-
ders of magnitude of cell size differences, the elevation of the power-law functions
vary among groups, with ciliates having the highest growth rates and flagellates the
lowest.

Unfortunately, there is very little overlap in the sizes of bacterial and eukaryotic
cells in these analyses of heterotrophs, so it is unclear whether the observed shift
in scaling behavior is a consequence of fundamental biological differences between
groups or a reflection of a more general scaling relationship, with a global optimum
size for cell-division rates being on the order of 10−6 µg. Although it may seem puz-
zling why all bacteria don’t evolve to very large sizes and all unicellular eukaryotes
to very small sizes, it should be remembered that total fitness is determined by the
difference between birth and death rates, and that the optimum size for survivorship
may differ greatly among environments.

One argument for a general shift in direction of scaling is that nonmodifiable
components such as the plasma membrane occupy an increasingly large fraction of
total cell volume as cells diminish to very small sizes, thereby restricting the amount
of cytoplasm available for other scalable processes critical to cell growth. In a general
review of marine phytoplankton, Raven (1986) argued that there is a general reversal
in the scaling of cell-division times at a cell volume of ∼ 30 µm3, which equates to
an approximate cell dry weight of 10−5 µg, close to the area of overlap in size of
bacterial and eukaryotic heterotrophs in Figure 8.5a. Although a similar argument
was made by Marañòn (2015; Marañòn et al. 2013), a broader comparative analysis
does not support this sort of nonmonotonic scaling for phototrophs (Figure 8.5b).
There is no relationship between bmax and cell size in cyanobacteria, and for the
two phototrophs groups for which there are data on several dozens of species, green
algae and diatoms, the allometric scaling coefficient is −0.09, which is about half
that found for heterotrophs.

It bears emphasizing that the minimum cell-division times summarized in Figure
8.5, most of which are less than a day, are all derived from pure cultures grown under
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optimized laboratory conditions. In nature, organisms may rarely if ever experience
such conditions, commonly dividing at least one to two orders of magnitude more
slowly than maximum rates. Indeed, many microbes inhabiting aquatic sediments
are thought to have generation times on the order of several years, and in some cases
even hundreds of years (Hoehler and Jørgensen 2013). In principle, such cells may
often enter semi-dormant states with maintenance requirements lower than those
implied in Figure 8.4, but little is known of this.

The preceding results permit three fairly general statements about the biology
of cells. First, in both eukaryotes and bacteria, species with large cells tend to
acquire biomass at higher absolute rates than do those with smaller cells. This
follows from the fact that the energetic requirement for growth scales nearly linearly
with cell volume (Figure 8.4), while cell-division rates scale much more weakly and
even positively in the case of bacteria (Figure 8.5). For heterotrophic unicellular
eukaryotes, the minimum cell-division time scales with cell volume with allometric
coefficient 0.20. Thus, assuming that cell mass is nearly proportional to cell volume
V (Chapter 7), the rate of incorporation of biomass scales as ∼ V 0.96−0.20 = V 0.76,
whereas for bacteria, the rate of biomass accumulation scales more like V 0.96+0.28 '
V 1.24. In both cases, the rate of production increases with cell size, but it does
so supralinearly with size in bacteria but sublinearly in eukaryotic cells. It is this
shift in scaling around a pivotal value of 1.0 that causes the shift in directionality
of scaling of bmax between groups seen in Figure 8.5a, as bmax is a function of the
absolute growth rate per unit biomass, i.e., the above scaling divided by V .

Second, returning to the results in the previous section, insight can be gained
on the efficiency of conversion of assimilated energy into growth, CG/CT . To obtain,
the lifetime cellular energy budget (CT ), we require an estimate of the cell-division
time, td, as CT = CG + tdCM , where quantitative expressions are given for CG (the
cost of growth) and CM (the cost of maintenance/day) as functions of cell volume
(V ) in Equations 8.2a,b. Defining td in units of days,

CG/CT '
1

1 + 0.35tdV −0.08
. (8.3)

Here, the computations will be carried out just for bacteria, with only the final
results being given for eukaryotic cells. Recalling from above that td = ln(2)/rmax,

noting from the regression in Figure 8.5 that bacterial rmax ' 527B0.28, where B is
the dry weight per cell in µg, and using Equation 7.1 to express B in terms of V ,
leads to td ' 0.055V −0.26 (in units of days). Substitution of the latter expression into
Equation 8.3 then leads to growth-efficiency estimates ranging from 0.92 to 0.99
for the range of bacterial cell volumes of 0.01 to 10 µm3. Thus, for bacterial cells
growing at maximum rates, the vast majority of assimilated energy is allocated to
growth, increasingly so in cells of larger size. With poorer growth conditions (larger
td), these efficiencies will necessarily decline. For example, with a tenfold increase in
td, the corresponding efficiencies become 0.79 to 0.92, and with a 100-fold increase
in td, they reduce to 0.10 to 0.54. Thus, a lower limit to bacterial cell size arguably
results from the progressive increase in the fraction of energy intake that must be
devoted to maintenance in the face of a relatively long cell-division time (Kempes
et al. 2012).

Growth efficiencies are somewhat lower for eukaryotic cells. For heterotrophic
eukaryotic flagellates, including dinoflagellates, growing at maximum rate, td '
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0.18V 0.17 days, and efficiencies decline from 0.93 to 0.83 for cell volumes of 10 to
106 µm3. For amoeboid forms, the minimum cell-division time is td ' 0.094V 0.19

days, leading to a range for CG/CT of 0.95 to 0.84 for cell volumes of 100 to 108

µm3. For ciliates, td ' 0.036V 0.20 days, and CG/CT ranges from 0.97 to 0.92 for cell
volumes of 103 to 107 µm3. Thus, when experiencing maximum growth capacity,
most eukaryotic cells incorporate > 90% of assimilated energy into growth vs. main-
tenance, although the scaling of efficiency with cell volume is negative, in contrast
to the situation in bacteria.

Third, the upper halves of the dashed ellipses in Figure 8.5a demarcate appar-
ent absolute upper-bounds to cell-division rates (normalized to 20◦C) that natural
selection has been able to achieve. For heterotrophic eukaryotes at this temperature,
no cell divides in < 1.7 hours, and no cell > 1 µg in dry weight divides in < 8 hours.
No phototroph of any size, bacterial or eukaryotic, divides in < 4 hours at 20◦C.
On the other hand, at the same temperature, some large bacterial heterotrophs can
divide in just 15 minutes.

The limits to natural selection imposed by the drift barrier. The clas-
sical dogma in physiological ecology is that scalings of bioenergetic features are
unavoidable constraints of biochemistry and/or biophysics, as lucidly outlined by
West (2017). Particularly common are arguments based on linear cell dimensions,
which as noted above, lead to power-law behavior with exponents being multiples
of 1/3 or 1/4, depending on whether the focus is on external surface area or inter-
nal delivery. However, although such hypotheses are based on what may appear to
be reasonable arguments, the inferred supportive evidence derives from statistical
analysis of patterns rather than on direct experimental evidence of mechanisms. A
more fundamental problem is that neither one-third nor one-quarter power-law scal-
ings provide general explanations for the scaling of bioenergetic traits in unicellular
organisms.

With respect to bacterial growth rates, the data are noisy enough that the
positive scaling is statistically consistent with an exponent of 1/5, 1/4, or 1/3. More
striking are the opposite directions of scaling of maximum growth rate and efficiency
with cell size in bacteria vs. eukaryotes. The scaling exponents for individual het-
erotrophic unicellular eukaryotic groups are mostly inconsistent with −1/4 power-law
scaling, and all are below 0.25. Moreover, as will be discussed in Chapter 24, this
pattern extends to multicellular animals. Thus, the overall pattern for heterotrophic
eukaryotes is much more compatible with −1/5 than either −1/4 or −1/3 power-law
scaling. For phototrophs, the scaling exponent is much weaker than −1/5, being
closer to −1/10. The key point is that these patterns are incompatible with purely
biophysical explanations, at least to the degree that they have been formulated to
this point.

All of this suggests a need to evaluate the problem from an entirely different
perspective. Shifting the view from biophysical constraints to limits on the evo-
lutionary process, one possibility is that with increasing cell size, the efficiency of
natural selection declines, owing to the associated reduction in effective population
size (Chapter 4) and the likely reduction in the fitness effects of certain kinds of
mutations (Chapter 17). If this hypothesis is correct, arguments that attempt to
explain scaling patterns across the Tree of Life purely on the basis of physiological
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and cell-geometric arguments will be incomplete, if not entirely misplaced. If, on
the other hand, it could be shown that the population-genetic environment has no
influence on scaling relationships, this would imply that the structure of cell biology
is such that there is always a supply of mutations with sufficiently small and variable
effects to universally bring things to their biophysical limits.

The intention here is not to promote the idea of precise 1/5 (or 1/10) power-
law scaling relationships. Further empirical study of the distribution of mutations
with small effects in various phylogenetic lineages will be necessary for that level
of resolution. The main point is that an assumption of the unbridled power of
natural selection is particularly questionable for traits related to growth rate and
other bioenergetic features.

Recall from Chapter 4 that the key determinant of whether natural selection
can eradicate a deleterious mutation with effect s is whether the ratio of the power
of selection to the power of drift s/(1/Ne) = Nes exceeds 1.0, where Ne denotes the
effective population size. There, it was further shown that Ne of a species scales
with the −0.20 power of the size at maturity (Figure 4.3). This implies that species
with larger cell sizes have reduced capacities to promote growth-rate promoting mu-
tations and to eradicate growth-rate reducing mutations of small effects. As noted
in Chapter 5 and further elaborated on in Chapter 17, the evidence is compelling
that a large fraction of mutations have fitness effects (s) far below |s| = 10−5, ex-
tending down to 10−10, with the lower bound likely being lower in species with
larger cell sizes. Because Ne in unicellular species is typically in the range of 106 to
109 individuals, this means that a substantial number of mutations with individu-
ally very mildly deleterious (i.e., growth-reducing) effects are free to accumulate in
the genomes of species with relatively small Ne while still being subject to efficient
purging in large-Ne species.

As discussed in Chapter 5, several genetic features determine how the efficiency
of selection against mildly deleterious mutations scales with the demographic fea-
tures of a population. Evaluation of these in a stepwise fashion shows how the
progressive incorporation of natural genomic features can lead to the kinds of scal-
ing outlined in Figures 8.5a,b. The simplest starting point assumes that selection
operates on individual genetic loci independently of events occurring at other ge-
nomic locations. This requires either very high recombination rates or such small
population sizes that cosegregating variants are never simultaneously present at mul-
tiple loci. Consider the situation in which each locus harbors two possible alleles, +
and −, with the mutation rates from + to −, and vice versa, being u10 and u01, and
the + allele having advantage s. At small enough population sizes that Nes� 1, the
long-term average frequency of the favorable + allele is simply a function of the ratio
of mutation rates, u01/(u01 + u10), but with increasing Ne, the increased efficiency
of selection drives the mean frequency to 1.0 once Nes � 1 (Figure 8.6a). Under
this model, the transition between these two extremes occurs in a narrow (order of
magnitude) range of Ne, with the neutral expectation holding for Nes � 0.05 and
an equilibrium frequency of the + allele near 1.0 being closely approximated when
Nes � 5. Thus, this simple model is inadequate to explain a consistent scaling of
mean performance across several orders of magnitude of Ne.

Suppose, however, that there are multiple, completely linked loci with the same
mutational and selection properties, with a haplotype’s growth rate being deter-
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mined in an additive fashion (proportional to the fraction of loci occupied by +
alleles), and fitness being defined by a multiplicative (independent effects) fitness
model, (1 − s)n0 ' e−sn0 , where n0 is the number of − alleles. In this case, it can
take as many as five orders of magnitude of Ne to span the full range of equilibrium
mean growth rate (Figure 8.6b). This shift in behavior is a consequence of selective
interference among simultaneously segregating mutations – for populations of mod-
erate size, there will be genetic variation among individuals in terms of the total
number of + alleles harbored across loci, the result being that many new beneficial
mutations will arise on suboptimal genetic backgrounds destined to eventual loss.
At the largest population sizes, however, selection still keeps − alleles at very low
frequencies at all genomic sites, reducing the effects of background interference.

Generally, it can be expected that fitness effects will vary among genomic sites,
with sites with large effects being much rarer than sites with small effects (Chap-
ter 5). In this case, with free recombination, the equilibrium mean performance
(relative to the maximum possible) will be a mixture of the responses found for
mutations with fixed effects. Three possibilities involving the four classes of muta-
tions in Figure 8.6a are shown in Figure 8.6c: equal frequencies of all classes; and
frequencies increasing with decreasing effects by factors of 10 and 100. Again, it can
be seen that the full range of mean performance can scale out over the full range
of Ne depending on the skew of the mixture distribution. Such behavior is a sim-
ple consequence of the sites with progressively smaller effects requiring increasingly
high Ne for selection to promote their favorable alleles. This can be observed as
the stepwise increment in mean performance in Figure 8.6c; a smoother transition
would arise with a continuous distribution of site effects.

Finally, Figure 8.6d considers the situation in which different types of sites are
completely linked. In this case, as a site with major effects becomes surrounded by
increasing numbers of minor-effect sites, there is again a progressive decline in the
rate of scaling of mean performance with Ne. Increasing numbers of minor-effect loci
cause increased background interference for selection operating on the major-effect
site, while also contributing more to the total maximum performance of the trait
(diluting the overall influence of the major-effect site).

Without a detailed understanding of the fine-scaled distribution of genomic
sites with different magnitudes of mutational effects, an explicit statement cannot
be made on the exact form of scaling of mean performance with respect to Ne. How-
ever, for a trait like growth rate, it can be expected that essentially every nucleotide
site influences performance in at least a small small way, and that there will be con-
siderable variation among sites in terms of average effects and recombination rates.
Because the plotted results encompass a wide range of plausible genetic properties,
these analyses at least make clear that there is little justification for ignoring the
possibility that the variation in the population-genetic environment (in this case the
reduction in Ne associated with increased organism size) plays a significant role in
defining relationships between maximum performance and organism size. For this
not to be the case, mutations at all sites would have to have selection coefficients in
excess of the largest 1/Ne (on the order of 10−4), which is highly implausible.

Note that both Ne and the maximum growth rate in eukaryotes scale with the
approximately −0.2 power of cell size. There are statistical uncertainties with both
measures, and it is not the intention here to claim that both scalings have identical
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parametric values. However, for explanatory purposes, it is convenient to consider
what this would mean if true. Given the critical benchmark for effective selection of
Nes = 1, parallel scaling would require that a proportional increase in cell volume be
accompanied by the same proportional increase in the load from effectively neutral
(but mildly deleterious) growth-reducing mutations. In principle, this could occur if
the fitness effects of mutations followed an approximately exponential distribution,
which as discussed in Chapters 5 and 17 is plausibly supported by the existing
data. For phototrophs (with −0.10 growth-rate scaling), however, for every x-fold
increase in cell size, there would have to be a x/2-fold increase in the load of small-
effect mutations. This, in turn, implies a less steep distribution of fitness effects of
mutations in phototrophs, but it remains unclear why the scaling should be different
among these two major groups.

Membrane Bioenergetics and the Prokaryote-Eukaryote Transition

As noted in Chapter 2, a peculiar historical feature of cell biology is the localization
of the key machinery associated with energy production to lipid bilayers. The series
of complexes known as the electron transport chain (ETC) couple the extraction
of electrons from the oxidation of organic compounds with the export of hydrogen
ions, creating a concentration gradient of the latter across the membrane. The
biochemical details of this process are covered in all biochemistry texts, and will
not be elaborated upon here. The salient issue is that the cross-membrane gradient
in hydrogen-ion concentration driven by the ETC causes chemiosmotic pressure for
the return movement of hydrogen ions through membrane-embedded ATP synthase
complexes, which couple this mechanical energy to the production of ATP. One of
the central differences between prokaryotes and eukaryotes is that in the former
all of these events take place on the inner cell membrane, whereas in eukaryotes
membrane bioenergetics has been relocated/restricted to the inner membranes of
mitochondria (where they would have been present from the outset in the primordial
mitochondrion; Chapter 23).

Under the assumption that energy production is limited by the number of ATP
synthase complexes, which in turn is assumed to be limited by the availability of
membrane-surface area in bacteria, Lane (2002, 2015, 2020; Lane and Martin 2010)
argues that the endosymbiotic establishment of mitochondria freed eukaryotes of
this constraint by providing effectively unlimited inner mitochondrial membranes.
This assertion led to the further claim that the energetic boost made possible by
mitochondria constituted a watershed moment in evolution by generating excess
power essential to all things associated with eukaryogenesis. Under this view, the
mitochondrion is not simply one of the many unique features of eukaryotes. Rather,
it is the key feature that enabled the evolution of internal cell structure, large cell
size, expanded genomes, multicellularity, sex, behavior, etc.

Before evaluating the likelihood of this scenario, a brief consideration of the
surface-area problem is in order. The general formulae for several common cell
shapes are provided in Table 8.1, where it can be seen that regardless of the shape,
volume always increases with the cube of a linear dimension, whereas the surface
area increases with the square of the linear measure. The surface-area to volume
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ratio depends on shape, but it is always inversely related to a linear dimension of
the cell.

Because the production of ATP in prokaryotes is highly dependent on complexes
embedded in the plasma membrane, the geometric-constraint argument implies that
if the cell surface is a limiting resource, there should be a reduction in energy
production per unit volume with increasing cell size. However, the analyses in the
previous section already shed doubt on this assertion, showing that increased cell size
in bacterial species is associated with higher, not lower, maximum rates of growth.
In contrast, mitochondria-bearing eukaryotes have lower energetic capacities than
prokaryotes on a volumetric basis, and growth rates decline with with increasing
cell size. This matters from an evolutionary perspective because it is the growth
rate per unit volume, often called the specific growth rate, that determines the
rate of gene flow into the next generation. Thus, observations on the growth-rate
potential across the Tree of Life are contrary to the basic premise underlying the
Lane hypothesis.

Table 8.1. Geometric features for cells of common shapes. Abbreviations: r < `, radii or
half-widths for spheroids; h, full length of a cylinder or rod; α = h/r or `/r. Note that for
a rod, h is the length from one rounded tip to the other. The formula for the surface area
of a spheroid is known as Knud Thomsen’s approximation.

Shape Surface Area (S) Volume (V ) S/V

Sphere 4πr2 (4/3)πr3 3/r

Cylinder 2πr(r + h) πr2h 2(1 + α)/h

Rod 2πrh πr2[h− (2r/3)] (2α/r)/[α− (2/3)]

Prolate spheroid 2.02πr2(1 + 2α1.61)0.63 (4/3)πr2` (1.5/`)(1 + 2α1.61)0.63

Energy production and the mitochondrion. A consideration of eukaryotic cell
anatomy provides a more mechanistic view of why the total membrane energetic ca-
pacity of eukaryotic cells is nothing out of the ordinary. A key question is whether
mitochondria do indeed endow eukaryotic cells with enhanced membrane surface
area for the occupancy of ATP synthase. Although the situation at the time of first
colonization of the mitochondrion is unknown, the iconic view of mitochondria being
tiny, bean-shaped cellular inclusions is not generalizable. For example, many uni-
cellular eukaryotes harbor just a single mitochondrion or one that developmentally
moves among alternative reticulate states (e.g., Burton and Moore 1974; Rosen et
al. 1974; Osafune et al. 1975; Biswas et al. 2003; Yamaguchi et al. 2011; Uwizeye
et al. 2020). Such geometries necessarily have lower total surface areas than a col-
lection of spheroids with similar total volumes. For the range of species that have
been examined, many of which do have small individualized mitochondria, the total
outer surface area of mitochondria per cell is generally on the order of the total area
of the plasma membrane, with no observed ratio exceeding 5:1, and those for the
smallest species being less than 1:5 (Figure 8.7a). Given the likely archaeal nature
of the cell that hosted the primordial mitochondrion (Chapter 23), it is likely that
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the starting condition resembled the situation in the smallest eukaryotes unless the
host cell was extraordinarily large or the primordial mitochondria were unusually
tiny.

Although the outer surface area of the mitochondrion has been the most com-
mon source of measurements, it is of less relevance than that of the inner membrane,
where the ATP synthase complex sits. However, for the few species that have been
investigated, the ratios of inner to outer membrane areas for mitochondria are mod-
est – ∼5.0, 2.4, 2.5, and 5.2, respectively, in mammals, the green alga Ochromonas,
the plant Rhus toxicodendron, and the ciliate Tetrahymena (summarized in Lynch
and Marinov 2017). Moreover, the total surface areas of mitochondria substantially
overestimate the real estate allocated to ATP synthase complexes, which are actu-
ally restricted to two rows on the narrow edges of the inner invaginations (called
cristae), comprising � 10% of the total internal membrane area (Kühlbrandt 2015).

Three additional observations raise further questions as to whether membrane
surface area is a limiting factor in ATP synthesis. First, multiple observations on
the developmental responses of organelles to cell growth indicate that the total
mitochondrial volume remains proportional to cell volume (Atkinson et al. 1974;
Grimes et al. 1974; Posakony et al. 1977; Pelligrini 1980; Rafelski et al. 2012), and
the same has been observed in the comparative analysis of protist species (Fenchel
2014). From the arguments in the preceding section, this implies that the surface
area of mitochondria scales with the 2/3rds power of cell volume, and hence that
mitochondrially generated power per cell volume declines as V −1/3. Thus, if mito-
chondrial surface area limits cellular energy production, to maintain mitochondrial
generating power capacity, the concentration of mitochondria would need to scale
as V 1/3 rather than being volume independent. Second, only a fraction of bacterial
membranes appears to be allocated to bioenergetic functions (Magalon et al. 2015),
again shedding doubt on whether membrane area is a limiting factor for prokaryotic
energy production. Third, as will be discussed more fully in Chapter 9, in every
bacterial species for which data are available, growth in cell volume is exponential
or close to it. This means that growth rates of individual bacterial cells increase
with cell volume despite the reduction in the surface area:volume ratio.

Still further insight into this issue derives from the average packing density of
ATP synthase for the few species with sufficient proteomic data (Lynch and Marinov
2017). For example, the estimated number of complexes in E. coli is ∼ 3000, and the
surface area of the cell is ∼ 16 µm2. Based on the diameter of the molecule, a single
ATP synthase in this species occupies ∼ 64 nm2 (Lücken et al. 1990) of surface area,
so the total set of complexes occupies ∼ 2% of the cell membrane. Drawing from
additional observations on four other diverse bacterial species, the overall average
membrane occupancy of ATP synthase is just 1% in bacteria (Lynch and Marinov
2017).

This kind of analysis can be extended to the few eukaryotes for which data are
available, noting that eukaryotic ATP synthases are slightly larger, with maximum
surface area of ∼ 110 nm2 (Abrahams et al. 1994; Stock et al. 1999). Although
ATP synthase resides in mitochondria in eukaryotes, it is relevant to evaluate the
fractional area that would be occupied were they to be located in the cell mem-
brane. Such hypothetical packing densities are 5 to 7% for yeast and mammalian
cells (Lynch and Marinov 2017). These observations suggest a ∼ 5-fold increase in
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ATP synthase abundance with cell surface area in eukaryotes, but the data conform
to a continuous allometric function with no dichotomous break between bacteria
and eukaryotes (Figure 8.7b). Thus, this multifaceted set of observations is consis-
tently contrary to the idea that the relocation of membrane bioenergetics endowed
eukaryotes with enhanced growth efficiency beyond what would be expected of bac-
terial cells of similar size. Indeed, if there are any effects at all, they appear to be
negative.

Cellular investment in ribosomes. The ribosome content of a cell provides a
strong indicator of its bioenergetic capacity. Owing to the large number of proteins
required to build the complex, ribosomes are energetically costly, and the number per
cell within a species appears to be universally correlated with cellular growth rate,
with low nutritional states being accompanied by reduced investments in ribosomes
relative to components of the cell involved in nutrient uptake (Chapter 9). One
might then expect variation in the translational capacity of cells of different species
to reflect their intrinsic bioenergetic potential.

It was noted in Chapter 7 that the genome-wide total and mean number of
transcripts per gene scale with cell volume as V 0.36 and V 0.28 respectively, and
that the analogous scalings are V 0.93 and V 0.66 for proteins, with no dichotomous
break between prokaryotes and eukaryotes (Lynch and Marinov 2015). As with the
transcripts they process and the proteins they produce, the numbers of ribosomes
per cell also appear to scale sublinearly with cell volume, in a continuous fashion
across bacteria and unicellular eukaryotes, including cultured cells from multicellu-
lar species. In this case, the scaling is proportional to V 0.79 (Figure 8.8). Note that
under the assumption that ribosomes produce proteins at approximately constant
rates in different organisms, the scaling of protein production per volume would be
V 0.79/V = V −0.21. Thus, the cellular concentration of ribosomes matches the scaling
of maximum growth rates with eukaryotic cell size outlined in Figure 8.5, reinforcing
the idea of a negative scaling of biomass production rates with cell volume.

The mitochondrion as a driver of eukaryotic evolution. Lane (2015) and
Lane and Martin (2010) have proposed a scenario for how the mitochondrion be-
came established by a series of adaptive steps, arguing that the eukaryotic leap to
increased gene number and cellular complexity, and a subsequent adaptive cascade of
morphological diversification, “was strictly dependent on mitochondrial power.” A
similar argument was made by DeLong et al. (2010), and many others have repeated
the narrative that eukaryogenesis and all of the associated downstream effects would
be impossible without mitochondria.

However, as should now be clear, there is no evidence in support of this hy-
pothesis, with diverse sets of comparative observations all leading to the opposite
conclusion. Large bacterial cells do not suffer from reduced rates of biomass pro-
duction, but eukaryotic cells do. There is not a quantum leap in the surface area of
bioenergetic membranes in eukaryotes, nor is the idea that ATP synthesis is limited
by total membrane surface area supported. Moreover, the numbers of ribosomes
and ATP synthase complexes per cell, joint indicators of a cell’s capacity to convert
energy into biomass, scale with cell size in a continuous fashion both within and be-
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tween bacterial and eukaryotic groups. In addition, as will be noted in subsequent
chapters, the absolute costs of producing not only ribosomes but the remaining
proteins in cells are substantially higher in eukaryotes than in bacteria, owing to
the substantial increase in ribosome size, gene lengths, investment in nucleosomes,
etc. Finally, there is the additional matter of the expense of building mitochondria,
associated with the high biosynthetic costs of lipid bilayers (Chapter 15).

More will be discussed with respect to the origin of the mitochondrion in Chap-
ter 23, but the idea that the mitochondrion engendered a bioenergetics revolution
can be put to rest for now. The relocation of membrane bioenergetics to inner mi-
tochondrial membranes may have endowed eukaryotes with novel possibilities for
further remodeling of cellular features. But an enhanced capacity for transforming
energy into biomass was not one of them.

Summary

• Cell volumes vary by approximately eleven orders of magnitude across the Tree
of Life, with most being in the range 10−3 to 108 µm3 in volume. Although most
prokaryotic cells are < 10 µm3 in size, a few giants exceed 109 µm3, and a few
unicellular eukaryotes with complex morphology are orders of magnitude larger.

• Species-specific mean phenotypes for various traits often scale in a continuous
manner with cell size, suggesting substantial constraints on evolutionary diver-
sification. A central goal of evolutionary cell biology is to determine the degree
to which such patterns are simple consequences of biophysical constraints, selec-
tive disadvantages of discordant combinations, or outcomes of a drift barrier that
increases with cell size.

• One of the most studied physiological traits is metabolic rate, which scales pos-
itively with cell volume, but does so in a nearly isometric fashion in unicellular
species. Such behavior is inconsistent with the 2/3 or 3/4 power-law scaling often
invoked in the literature. Despite their ease of acquisition, metabolic-rate mea-
sures provide little insight into the basic currency of natural selection, as they
provide no information on the rate at which energy is converted into growth and
reproduction.

• The energetic costs of both constructing and maintaining cells scale nearly iso-
metrically with cell volume across the Tree of Life, despite the significant differ-
ences in cellular architectures between prokaryotes and eukaryotes. The biophys-
ical/evolutionary determinants of the total costs remain to be determined.

• Maximum cell-division rates scale positively with cell size among heterotrophic
bacterial species, but negatively among eukaryotic heterotrophs. Similarly, there
is a directional shift in the efficiency of conversion of energy to growth in het-
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erotrophic bacteria vs. unicellular eukaryotes, with growth efficiency being lowest
in large eukaryotic cells, and highest in large prokaryotic cells.

• The precise mechanisms that define the upper limits to growth rate remain un-
resolved, but the case can be made that the negative scaling with cell size in
eukaryotes is at least in part a consequence of the reduced efficiency of natural
selection operating on growth-rate related mutations in organisms with progres-
sively larger cell size. As cell size increases, and the effective population size
decreases, a larger number of mild growth-rate reducing mutations are free to
drift to fixation.

• It is commonly asserted that the establishment of the mitochondrion released the
host eukaryotic cell from a surface area:volume constraint, eliciting a bioenergetic
revolution. However, a diversity of observations, ranging from the scaling of
energetic traits with cell size to the anatomy of mitochondria, are inconsistent
with this hypothesis.
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Foundations 8.1. The cost of building a cell. Cell-division rates are ultimately
determined by the rate of acquisition of energy necessary to build a new cell. Arguably,
the best currency to use in such analyses is units of ATP, as it is the hydrolysis of
phosphate bonds in the conversion of ATP to ADP (and in some cases, ADP to AMP,
or GTP to GDP) that delivers the vast majority of energy for cellular functions. In
principle, with a solid enough understanding of biosynthetic pathways and the various
inputs of cellular resources, one could calculate the total energy required to build
a cell by summing over the demands for the replacement of proteins, nucleic acids,
lipids, etc. However, energy transformation is not 100% efficient, cellular components
turnover on time scales less than the life of a cell, and energy must be invested into
additional maintenance functions. Thus, the total energy utilized by a cell before
giving rise to two daughters must exceed the cost of producing the standing levels of
cellular components. This total level of investment (maintenance plus construction)
represents the net cost of building a cell.

Determining the quantity of interest here is generally difficult for cells growing
in natural environments, as most heterotrophic organisms consume a variety of re-
sources varying in energy content. Thus, most knowledge in this area is derived from
the growth of organisms (virtually always microorganisms) in a defined medium with
a single limiting carbon/energy source that enters a metabolic pathway with well-
understood ATP-generating properties. If the organism can be grown in a chemostat
(Figure 8.3a), it is straight-forward to calculate both the rate of cell division and the
rate of substrate consumption, and therefore to obtain the ratio, i.e., the yield of cells
per unit consumption.

Data derived from such analyses were the source of the information presented
in the preceding chapter on yields of biomass per unit carbon consumption (Figure
7.8). However, as previously noted, the level of yield can depend on the nature of
the carbon source, so a more meaningful measure focuses on a secondary calculation
involving conversion to the yield per unit ATP hydrolysis. Such a measure is more
generalizable, as it accounts for differences in energetic contents among alternative
carbon sources.

A chemostat (Figure 8.3a) consists of a closed environment in which a sterilized
resource-bearing medium is pumped in at a defined rate, with resource-depleted efflu-
ent (including the cells suspended within it) being eliminated at the same rate. If such
a system is seeded with a pure population of a microbe, after several rounds of cell
division, the population size will reach a steady state defined by the flow rate and the
nutrient concentration. At this point, the population will have grown to a density at
which the cell-division rate r equals the dilution rate d (i.e., the flow rate divided by
the culture volume). The rate of resource consumption per cell is equal to the rate of
loss of substrate (the flow rate times the concentration difference between the inflow
and outflow) divided by the number of cells in the steady-state culture.

Joint insight into the maintenance and growth requirements of cells is acquired
by culturing cells under different flow rates, which imposes different nutritional states
as low and high dilution rates lead to high and low population densities (and hence
low and high nutrient availabilities per cell). Assuming a constant rate of resource
consumption per cell necessary for maintenance (CM ), the consumption rate (per unit
time) at cell-division rate r (equivalent to the dilution rate d) can be written as

C = CM + (r · CG) (8.1.1)

where CG measures the total growth-related consumption per cell division (Tempest
and Neijssel 1984; Russell and Cook 1995). From a fitted least-squares regression of
observed consumption rates C against growth rates r, the intercept and slope respec-
tively estimate the cellular requirements for maintenance per unit time and growth
per cell division, CM and CG (Figure 8.3b).
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The total cost of producing a cell at any growth rate r can be obtained by
multiplying the consumption rate C by the mean cell-division time, which is equivalent
to the reciprocal of the cell division rate, 1/r,

CT = (CM/r) + CG, (8.1.2)

Provided the assumption of a constant rate of basal metabolism independent of the
growth rate is correct, this means that lifetime resource requirements are higher in
slower-growing cells owing to the increased cumulative maintenance requirements un-
der a longer lifespan.

In the preceding formula, the units associated with CT and CG are of the form
(amount of resources consumed)/cell. Here, however, we are interested in defining
CT to be the number of ATP hydrolyses required to yield a new cell, so appropriate
conversions need to be made. CG is then defined as the total number of ATP hydrolyses
consumed in the production of building blocks leading to an offspring cell (independent
of time), and CM as the number of ATPs utilized per cell per unit time for maintenance.
The quantity 1/CG is often denoted as Ymax, as it represents the yield of cells per unit
resource consumption that would occur in the absence of basal cellular requirements.

Although the general approach just taken assumes that metabolic requirements
are constant, independent of the rate of growth, alternative formulations have been
developed for the situation in which there is an additional metabolic cost to growth
(Tempest and Neijssel 1984; Wieser 1994; Russell and Cook 1995). Note, however, that
if maintenance costs are linearly related to the growth rate, this additional contribution
is simply contained within the term CG in Equation 8.1.1, but in principle, a term
that is a nonlinear function (e.g., a quadratic) of r can be included. Although such
alternative expressions can yield somewhat different interpretations on how energy is
partitioned as a function of the growth environment, the total energy requirement
observed at any particular growth rate remains unambiguous.
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Marañón, E, P. Cermeño, D. C. López-Sandoval, T. Rodriguez-Ramos, C. Sobrino, M. Huete-

Ortega, J. M. Blanco, and J. Rodriguez. 2013. Unimodal size scaling of phytoplankton growth

and the size dependence of nutrient uptake and use. Ecol. Lett. 16: 371-379.

Marshall, W. F. 2020. Scaling of subcellular structures. Annu. Rev. Cell Dev. Biol. (in press).

Okie, J. G. 2013. General models for the spectra of surface area scaling strategies of cells and

organisms: fractality, geometric dissimilitude, and internalization. Am. Nat. 181: 421-439.

Osafune, T., S. Mihara, E. Hase, and I. Ohkuro. 1975. Electron microscope studies of the vegetative

cellular life cycle of Chlamydomonas reinhardi Dangeard in synchronous culture. III. Three-

dimensional structures of mitochondria in the cells at intermediate stages of the growth phase

of the cell cycle. J. Electron Microsc. (Tokyo) 24: 247-252.

Pellegrini, M. 1980. Three-dimensional reconstruction of organelles in Euglena gracilis Z. I. Qual-

itative and quantitative changes of chloroplasts and mitochondrial reticulum in synchronous

photoautotrophic culture. J. Cell Sci. 43: 137-166.

Pirt, S. J. 1982. Maintenance energy: a general model for energy-limited and energy-sufficient

growth. Arch. Microbiol. 133: 300-302.

Pittis, A. A., and T. Gabaldón. 2016 Late acquisition of mitochondria by a host with chimaeric

prokaryotic ancestry. Nature 531: 101-104.

Posakony, J. W., J. M. England, and G. Attardi. 1977. Mitochondrial growth and division during

the cell cycle in HeLa cells. J. Cell Biol. 74: 468-491.

Rafelski, S. M., M. P. Viana, Y. Zhang, Y. H. Chan, K. S. Thorn, P. Yam, J. C. Fung, H. Li, F.

Costa Lda, and W. F. Marshall. 2012. Mitochondrial network size scaling in budding yeast.

Science 338: 822-824.

Raven, J. A. 1986. Physiological consequences of extremely small size for autotrophic organisms in

the sea, pp. 1-70. In T. Platt and E. K. W. Li (eds.) Photosynthetic picoplankton. Can. Bull.

Fish. Oceans.

Rosen, D., M. Edelman, E. Galun, and D. Danon. 1974. Biogenesis of mitochondria in Tricho-

derma viride: structural changes in mitochondria and other spore constituents during conidium

maturation and germination. Microbiol. 83: 31-49.

Russell, J. B., and G. M. Cook. 1995. Energetics of bacterial growth: balance of anabolic and

catabolic reactions. Microbiol. Rev. 59: 48-62.

Savage, V. M., B. J. Enquist, and G. B. West. 2007. Comment on ’A critical understanding of the

fractal model of metabolic scaling’. J. Exp. Biol. 210: 3873-3874.

Stock, D., A. G. Leslie, and J. E. Walker. 1999. Molecular architecture of the rotary motor in ATP

synthase. Science 286: 1700-1705.

Tempest, D. W., and O. M. Neijssel. 1984. The status of YATP and maintenance energy as

biologically interpretable phenomena. Annu. Rev. Microbiol. 38: 459-486.

Thompson, D. A. 1917. On Growth and Form. Cambridge Univ. Press, Cambridge, UK.

Tyn, M. T., and T. W. Gusek. 1990. Prediction of diffusion coefficients of proteins. Biotechnol.

Bioeng. 35: 327-338.

Uwizeye, C., J. Decelle, P.-H. Jouneau, B. Gallet, J.-B. Keck, C. Moriscot, F. Chevalier, N. L.



SCALING RELATIONSHIPS 23

Schieber, R. Templin, G. Curien, Y. Schwab, G. Schoehn, S. C. Zeeman, D. Falconet, and

G. Finazzi. 2020. In-cell quantitative structural imaging of phytoplankton using 3D electron

microscopy. BioRxiv doi.org/10.1101/2020.05.19.104166.

von Bertalanffy, L. 1957. Quantitative laws in metabolism and growth. Quart. Rev. Biol. 32:

217-231.

West, G. 2017. Scale: the Universal Laws of Growth, Innovation, Sustainability, and the Pace of

Life in Organisms, Cities, Economies, and Companies. Penguin Press, London, UK.

West, G. B., J. H. Brown, and B. J. Enquist. 1997. A general model for the origin of allometric

scaling laws in biology. Science 276: 122-126.

West, G. B., J. H. Brown, and B. J. Enquist. 1999. The fourth dimension of life: fractal geometry

and allometric scaling of organisms. Science 284: 1677-1679.

West, G. B., W. H. Woodruff, and J. H. Brown. 2002. Allometric scaling of metabolic rate from

molecules and mitochondria to cells and mammals. Proc. Natl. Acad. Sci. USA 99 Suppl. 1:

2473-2478.

Wieser, W. 1994. Cost of growth in cells and organisms: general rules and comparative aspects.

Biol. Rev. 69: 1-33.

Yamaguchi, M., Y. Namiki, H. Okada, Y. Mori, H. Furukawa, J. Wang, M. Ohkusu, and S.

Kawamoto. 2011. Structome of Saccharomyces cerevisiae determined by freeze-substitution

and serial ultrathin-sectioning electron microscopy. J. Electron Microsc. (Tokyo) 60: 321-335.

Zeuthen, E. 1953. Oxygen uptake as related to body size in organisms. Quart. Rev. Biol. 28: 1-12.



 

  



 

  

Dry Weight (g)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

M
et

ab
ol

ic
 R

at
e 

(c
al

 / 
m

in
)

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

Unicellular eukaryotes

Bacteria



  



 

 

 

 

 

   



 

 

 

 

 

    

Mass at Maturity (g)

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

M
a

xi
m

um
 E

xp
on

en
tia

l G
ro

w
th

 R
a

te
 (

da
ys

-1
)

10-2

10-1

100

101

102

Bacteria

Yeasts

Amoeboids

Ciliates

Heterotrophic flagellates

Dinoflagellates

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

M
ax

im
um

 E
xp

on
en

tia
l G

ro
w

th
 R

at
e

 (
da

ys
-1

)

10-2

10-1

100

101

102

Cyanobacteria
Green algae
Diatoms
Haptophytes

Heterotrophs 

Phototrophs 

a) 

b) 



 

 

 

 

 

   

1 Major Locus, s = 10-5

Population Size, N

104 105 106 107 108 109

R
e

la
tiv

e 
P

er
fo

rm
a

nc
e

10-1

100

L = 1 
L = 10
L = 100
L = 1000
L = 10000

L linked minor loci, s = 10-7

Single loci (u10 = 100u01)

104 105 106 107 108 109

R
el

a
tiv

e
 P

er
fo

rm
a

nc
e

10-2

10-1

100

s = 10-5 10-810-710-6

104 105 106 107 108 109

10-1

100

L = 1
L = 10
L = 100
L = 1000
L = 10000

L linked loci (s = 10
-6

, u10 = 10u01)

104 105 106 107 108 109

10-2

10-1

100

1x
10x
100x

Population Size, N

Multiple unlinked loci (u10 = 100u01)

d)c)

b)a)



 

 

 

 

 

   

Surface Area of Cell (m2)

100 101 102 103 104

S
ur

fa
ce

 A
re

a 
of

 M
ito

ch
on

dr
io

n 
(

m
2 )

100

101

102

103

104
Unicellular eukaryote
Mammalian 1:5

1:15:1

Cell Surface Area (m2)

100 101 102 103 104

N
um

be
r 

of
 A

T
P

 S
yn

th
as

e 
C

om
pl

ex
es

 / 
C

el
l

102

103

104

105

106

107

b)a)



 

 

 

 

 

 




