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Virtually every aspect of cell biology relies on intermolecular interactions, some of
which extend into long, multi-step pathways. In many pairwise interactions, the
interacting partners represent a coevolutionary loop with each participant consti-
tuting part of the selective environment of the other. This is true, for example, of
crosstalk between transcription factors and their binding sites, and between pro-
teins conferring specificity in vesicle trafficking in eukaryotes. Metabolic pathways
are different in that there is typically no direct physical contact between the major
players, with each simply imposing a chemical modification on a nonevolvable sub-
strate, which is then passed on to another enzyme. Most cellular processes involving
resource acquisition and biosynthesis involve multiple steps of this sort.

Catabolic pathways break down complex organic molecules into simpler ones
for a variety of reasons: the release of energy for use in other cellular processes;
reduction to simpler precursors for use in specific biosynthetic pathways; and detox-
ification of harmful substances. Sometimes an intermediate metabolite in a pathway
has no function other than to serve as a link between two compounds that are use-
ful. Frequently, a link serves multiple purposes, e.g., generating a useful precursor
molecule for a biosynthetic pathway, and in the process regenerating ATP and/or
NADH. In contrast, anabolic pathways, which require energy input, are responsible
for the synthesis and elaboration of the constituents of proteins, nucleic acids, lipids,
and other molecules from which cells are built.

Metabolic pathways motivate several fundamental evolutionary questions. First,
what limits the level of perfection of their enzymatic constituents? Given that
biomass and energy production are central to all of biology, and given that the costs
of protein machineries are substantial, one would expect metabolic enzymes to have
high efficiencies and specificities so as to minimize the infrastructure costs. Second,
what are the sources of the enzymes that enable the emergence of novel metabolic
features? One expects a descent-with-modification scenario, with functional alter-
ations requiring moderate numbers of steps, but how does a specialized enzyme
integrated into metabolism become free to take on a new activity? Third, what
determines the structure of metabolic pathways, and how recalcitrant are the par-
ticipants in such pathways to replacement? Again, one might expect such features
to be among the most conserved aspects of cell biology.

Comparative analyses of metabolic machinery provide surprising answers to all
of these questions. Despite the impressive performance of enzymes, their catalytic
efficiencies are generally far below the biophysical limits, whereas inherent inaccu-
racies provide latent potential for the emergence of new catalytic functions. Despite
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the centrality of metabolic pathways to all of life, both their structure and the
identities of the underlying participants exhibit substantial phylogenetic variation.
Thus, as with many other cell biological features, numerous aspects of the metabolic
machinery appear to be influenced by the intervention of nonadaptive processes.

Enzymes

Essentially all metabolic pathways are driven by enzymatic proteins whose primary
roles are to facilitate the transformation of substrates into products. Thus, any
attempt to understand the mechanisms of metabolic-pathway evolution must begin
with a basic appreciation of the fundamental features of enzymes. First, enzymes
generally do not create entirely novel biochemical reactions, but simply magnify
transformation rates beyond what happens spontaneously. The level of enhance-
ment of catalytic rates can be enormous, typically in the range of 107 to 10'x the
corresponding rates in the absence of enzyme (Wolfenden and Snider 2001). Second,
enzymes are recyclable — after they disengage with a substrate/product molecule,
they are free to enter into a new reaction. Third, most enzymes carry out very
simple reactions, usually involving no more than two substrates. Such simplicity
likely results from the diminishingly small probabilities of joint encounters of mul-
tiple sets of molecules. Third, there are usually no more than one or two substrate
modifications (in the form of chemical-bond changes) per enzymatic step. A nat-
ural consequence of such simplicity is the necessity of multistep pathways for the
complete breakdown or synthesis of complex molecules.

Basic enzymology. Although most enzymes catalyze simple chemical reactions,
these are almost always targeted to highly specialized substrates. Biochemists gener-
ally classify enzymes into six categories according to the reaction types in which they
engage, although layers of subdivision also enter the overall classification scheme.
Oxidoreductases (e.g., dehydrogenases and oxidases) transfer electrons from one
substrate to another, whereas transferases (e.g., transaminases and kinases) trans-
fer larger functional groups (e.g., amine or phosphate groups) from one substrate
to another. Hydrolases (e.g., lipases, phosphatases, and peptidases) cleave chem-
ical bonds by addition of water, leading to the breakdown of one substrate into
two product molecules, whereas lyases (e.g., decarboxylases) break bonds in a non-
hydrolytic fashion. Isomerases make molecular changes within a single molecule,
whereas ligases (e.g., synthetases) join two molecules.

Although the structural features of enzymes dictate their chemical potential
and specificity, the actual reaction rates are highly dependent on the substrate con-
centration. The basic issues are outlined in Foundations 19.1, where the famous
two-parameter formulation of Michaelis and Menten (1913) to describe this rela-
tionship is derived. Under this model, an enzymatic reaction rate is viewed as the
net outcome of two processes: 1) the rate of productive encounters between enzyme
and substrate, which is mainly a function of physical factors and molecular densi-
ties; and 2) the rate of the ensuing chemical transformation, which is a function of
enzyme structure and the nature of the interaction. These features define two key
quantitative parameters for every enzyme-substrate interaction: 1) the maximum
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reaction rate (per unit enzyme concentration) at saturating substrate concentration,
keas, which is a measure of catalytic efficiency once engaged with a substrate molecule
(often also referred to as the enzyme turnover number); and 2) the substrate con-
centration at which the reaction rate equals half the maximum rate, Kg, which is a
function of the physical rates of association and dissociation between enzyme and
substrate (Figure 19.1). The hyperbolic Michaelis-Menten relationship between the
rate of product formation and substrate composition arises in many other contexts
in biology, including nutrient-uptake and growth responses to nutrient concentration
(Chapters 9 and 18).

To understand how the kinetic parameters of enzyme performance are guided by
natural selection, it is useful to know the typical substrate concentrations within the
intracellular environment. At sufficiently high concentrations, such that the time
intervals between substrate encounter rates are negligible, an enzymatic reaction rate
is defined by k..t alone, whereas at sufficiently low concentrations the reaction rate
is a function of the composite parameter, k..;/Ks, which is the slope of the response
to low substrate concentrations (generally called the kinetic efficiency; Foundations
19.1). If substrate concentrations are typically > Kg, selection for higher reaction
rates would largely be focused on the catalytic efficiency. However, at low substrate
concentrations, selection should also favor a reduction in K.

Given the underlying determinants of Kg, Equation 19.1.1c, it is clear that se-
lection can enhance the flux rate of a reaction in three ways: 1) increasing the rate
of association of enzyme and substrate (k,); 2) decreasing the backwards rate of
disengagement (kq); and 3) increasing the forward rate of catalysis (kca;). Crowley
(1974) refers to such changes as influences on affinity, efficiency, and velocity. Un-
less there are physical tradeoffs in the mechanisms allowing improvement in these
three parameters, selection is likely to act in a directional fashion on each of them.
However, as will be noted below, there are biophysical limits to what can be accom-
plished. Moreover, as can be seen from Equations 19.1.1c and 19.1.2, changes in
kcat influence both the maximum reaction rate and the half-saturation constant, so
these two features are not entirely independent (see also Foundations 18.1).

Only a few attempts have been made to estimate the intracellular concentrations
of various metabolites. In E. coli, one of the few species for which kinetic parameters
are available for a large number of enzymes, for cells in exponential-growth phase
on several different carbon substrates, most metabolite concentrations are in excess
of the Ky values of their associated enzymes (Bennett et al. 2009). Indeed, ~ 60%
of metabolites (including ATP and NAD™) have concentrations more than tenfold
higher than their associated Kg, implying saturation-level flux rates. Given the costs
of protein biosynthesis, at least for this set of enzymes, this suggests that selection
puts a premium on catalytic-core features that maximize the flux per unit enzyme
(high kcat). Nonetheless, as will be shown below, ke, is often far below what seems
possible biophysically.

Degree of molecular perfection. A perfect enzyme would be one with such a high
catalytic efficiency that the reaction rate is limited only by the rate of encounters
with substrate molecules. In this case, the reaction would be effectively instan-
taneous following a productive colocalization of enzyme and substrate molecules.
Thus, understanding the determinants of enzyme-substrate encounter rates is an
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essential starting point to evaluating the limits of what is possible vs. what natural
selection has actually accomplished.

The rate at which randomly and homogeneously distributed particles engage
with each other in an aqueous medium can be viewed as the product of three func-
tions: 1) the rate of encounter by diffusion-like processes (k.); 2) a potential mul-
tiplier to account for further attractive (or repulsive) charges between enzyme and
substrate (m. > 1 or < 1, respectively); and 3) the fraction of encounters that are in
the correct orientation for proper engagement (p.),

kenc - kemepe~ (191)

Assuming that encounters between enzyme (E) and substrate (S) occur via a
three-dimensional diffusion process, and that both types of molecules can be approx-
imated as spheres, with the latter being much smaller than the former, the diffusion
limit is

ke ~ (1.7 x 10%) (TE> : (19.2)
S

in units of M~!'sec™!, where rg, rg are the effective radii of enzyme and substrate

particles, and M denotes the number of moles per liter (Foundations 7.2). The
assumption that rg > rg is entirely reasonable for metabolic enzyme functions.
For example, the twenty amino acids have individual masses ranging from 75 to
204 g/mol, and most enzymes contain on the order of a few hundred amino acids,
whereas the molecular weight (g/mol) of glucose is 180, of NADH is 663, of ATP is
507, and of nucleosides A, G, C, and T is 135, 151, 111, and 126 g/mol, respectively.
Thus, noting that a radius is roughly proportional to the one-third power of mass,
depending on the enzyme and substrate, for metabolic reactions rg/rg will typically
be in the neighborhood of 10 to 100, implying a k. on the order of 10!° to 10!
M-1sec™!.

Although numerous factors can cause the overall encounter rate, kenc, to devi-
ate from the expectation based on diffusion alone, much less is known about the
two other components in Equation 19.1. Early attempts to estimate the fraction of
productive encounters, p., generally assumed that overlap between a small circular
patch on the surface of the enzyme (and usually the substrate) is critical for proper
adhesion (Berg and von Hippel 1985; Janin 1997; Camacho et al. 2000). However,
simply multiplying the overall encounter rate by the fraction of properly oriented
molecules yields rates that are too low (Berg 1985; Schlosshauer and Baker 2004),
probably because some initially unfavorable encounters undergo rotational diffusion,
with the two molecules sliding around each other rather than completely disengag-
ing. If at least one contact point is correct, rotational movement may quickly locate
a second favorable contact, thereby facilitating the remaining fine tuning (Northrup
and Erickson 1992). All of these things taken together, orientation limitations can
still reduce kepe by as much as 100 to 1000 fold (Schlosshauer and Baker 2004), i.e.,
pe is commonly < 0.01. Less clear is the degree to which electrostatic-charge effects
enhance an enzyme’s likelihood of productive encounters (Zhou 1993). For a very
well-studied enzyme, barnase, and its inhibitor, barstar, Janin (1997) estimated m,
to be ~ 10°, but because p, ~ 10~° for this particular interaction, electrostatic effects
and hydrophobic steering essentially compensate for each other, rendering kep. =~ ke.
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One final point to consider is that the internal milieu of a cell is hardly the
open-water environment assumed in most diffusion theory (Chapter 7). Rather, 20
to 40% of the cytoplasmic volume of a typical cell is occupied by proteins and other
macromolecules (Zimmerman and Trach 1991; Luby-Phelps 2000; Ellis 2001). As
a consequence, the distance between proteins is on the order of the width of the
proteins themselves. On the one hand, molecular crowding reduces the volume that
must be searched to locate a small solute, but on the other hand, transient molecular
confinement can inhibit free diffusion. Although the net effects on small metabolites
are minor, the diffusion coefficients for proteins are reduced by 10 to 50x in FE. coli
(Elowitz et al. 1999; Konopka et al. 2006; Nenninger et al. 2010), and toward the
lower end of this range in eukaryotic cells (Luby-Phelps 2000; Dix and Verkman
2008).

The preceding considerations allow a rough calculation of the maximum achiev-
able rate of an enzymatic reaction, conditioned on the internal state of today’s cells.
As noted above, the ideal situation would be one in which the overall reaction rate
is dictated only by the rate of encounter, which is expected to be on the order of
1019 to 10t M~!sec™! in a purely aqueous environment, assuming spherical particles
with all contacts being productive regardless of orientation. Roughly speaking, after
accounting for inappropriate orientations and the effects of molecular crowding in
a cellular environment, the best that may be physically achievable inside cells is an

association rate of order 10% to 10° M~ !sec™!.

How does this biophysical limit to the catalytic rate compare with the evolved
capacities of enzymes? Returning to the Michaelis-Menten formula, Equation 19.1.4,
we see that at low substrate concentrations (the situation under diffusion limitation),
the reaction rate is closely approximated by k..t [E1|[S]/Ks, where the quantities in
brackets denote the molar concentrations (M, in moles per liter) of enzyme and sub-
strate. Because Kg =~ kcat/ke (Foundations 19.1), this reduces to k.[Er][S], showing
that the preceding arguments yield an upper limit to the kinetic efficiency, kc.:/Ks,
an observable composite parameter.

Using this logic and early observations on triosephosphate isomerase, Albery
and Knowles (1976a,b) argued that many enzymes have been pushed to this level of
perfection by natural selection, and hence have reached the end of their “evolution-
ary development.” However, summarizing kinetic data for thousands of enzymes in
dozens of species, Bar-Even et al. (2011) and Davidi et al. (2018) reached a sub-
stantially different conclusion. The average enzyme has a ke./Ks ~ 10° M~ 1sec™!,
several orders of magnitude below the apparent diffusion limit (Figure 19.2). Al-
though most rate estimates are derived from in vitro aqueous environments, they are
highly correlated with in vivo estimates (Davidi et al. 2016), with the average value
of the latter for specific enzymes being somewhat lower than the in vitro estimates
but generally by no more than 10x.

The simplest interpretation of these observations is that, on average, only one
in 10% to 10* collisions between an enzyme and a substrate molecule typically results
in a productive interaction (Bar-Even et al. 2015). In E. coli, the average catalytic
rate of surveyed enzymes is keo, =~ 10 sec™!, with an approximate range of 1072 to 103
(Davidi et al. 2016, 2018; Chen and Nielsen 2021), and a survey based on a smaller
number of enzymes in the plant Arabidopsis yields k..; estimates of a similar order
of magnitude. Based on a number of biochemical considerations (e.g., electrostatic
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and hydrogen-bond interactions, bond cleavage, exclusion of water molecules), the
approximate upper bound of k., for metabolic reactions is ~ 10° sec™! (Hammes
2002; Benkovic and Hammes-Schiffer 2003). Remarkably, there is no correlation
between an enzyme’s catalytic rate and the degree to which the reaction goes forward
spontaneously, i.e., the activation barrier, nor is there a correlation with the in vivo
flux rate of the reaction or with the expression level of the enzyme (Davidi et al.
2018).

Taken together, these observations suggest that enzyme efficiencies are gener-
ally far below what should be physically possible, one of the most dramatic ex-
amples being the RuBisCo protein discussed in the preceding chapter. The most
compelling explanation for such striking disparities is a form of the drift-barrier
hypothesis (Hartl et al. 1985; Heckmann et al. 2018), which postulates a sort of
diminishing-returns epistasis, such that as catalytic rates reach higher and higher
levels, additional improvements enhance organismal fitness to a lesser and lesser ex-
tent. This requires that the mapping of fitness on catalytic rate eventually reaches
a plateau, much like the Michaelis-Menten relationship itself. One reason why such
a relationship is likely to exist will be discussed below in the context of the sensitiv-
ity of the fluxes through enzymatic pathways — such networks dilute the selection
intensity on the individual components, although not entirely so, and not equally
for all pathway constituents.

Consistent with this theory, Bar-Even et al. (2011) found that enzymes involved
in secondary metabolism are on average ~ 30x less efficient than those involved in
central metabolism, as expected if selection operates less efficiently on downstream
enzymes, assuming these have variants with diminished fitness effects owing to their
lower degree of entrenchment in cellular biochemistry. In addition, prokaryotic en-
zymes have slightly better kinetics than those from eukaryotes (Bar-Even et al.
2011), as expected for species with higher effective population sizes, although the
differences are not large, possibly because of uncertainties with data drawn from a
wide array of enzymes, species, and experimental conditions.

An additional issue with respect to the drift-barrier hypothesis for the low cat-
alytic rates of enzymes is that the flux rate of a reaction is equal to the product of
the catalytic rate per enzyme molecule and the enzyme concentration. Proteins are
energetically costly (Chapter 17), so any increase in the catalytic rate per enzyme
molecule would presumably reduce the number of molecules required for reactions,
thereby freeing up resources for other cellular functions. This further emphasizes
the surprisingly low catalytic efficiency of enzymes. An alternative argument for
low catalytic rates is that enzymes face biophysical compromises, such that any im-
provement in efficiency comes at the cost of enzyme stability, solubility, or accuracy.
However, although such tradeoffs surely exist, they are not universal (Nguyen et al.
2017; Klesmith et al. 2017). Thus, the relatively low efficiencies of enzymes remains
one of the big unsolved mysteries of evolutionary biochemistry.

Enzyme promiscuity. In addition to being far from perfect in terms of catalytic
rates, most enzymes also bind to inappropriate substrates at fairly high frequencies,
the case of RuBisCo discussed in the previous chapter again providing a dramatic
example. Although quantitative analyses have been largely confined to bacteria,
error rates at normal cellular concentrations of off-target substrates are commonly
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in the range of 0.1% to well over 1.0% (e.g., Wilks et al. 1988; Yano et al. 1998;
Rothman and Kirsch 2003; Rakus et al. 2008; Ge et al. 2014; Fernandes et al.
2015). A review of ~ 250 enzymes in E. coli suggest an average error rate of 0.0045
(Notebaart et al. 2014), with 37% of metabolic enzymes engaging with multiple
substrates at biologically significant rates (Nam et al. 2012)

Additional large-scale studies in F. coli illustrate the dramatic reservoir of latent
activities of proteins. For example, ~ 20% of single-gene knockouts in this species
can be rescued by overexpression of at least one non-cognate gene (Patrick et al.
2007). Starting with a full library of E. coli constructs, each overexpressing a
single endogenous protein residing on a plasmid, Soo et al. (2011) found measurable
resistance to 237 novel (and likely never-before encountered) toxins and antibiotics
in ~ 0.4% of cases. In addition, using repeated cycles of mutagenic PCR, cloning,
transformation, and selective challenge, Aharoni et al. (2005) generated mutants for
phosphotriesterase capable of hydrolyzing substrates that had been rarely, if ever,
encountered before. In this latter study, depending on the substrate selected for,
the ancestral gene function sometimes declined but in other cases increased, the end
result being proteins with substantially remodeled catalytic sites with their own
novel profiles of promiscuous functions.

The nature of enzyme promiscuity ranges from substrate ambiguity (catalysis
of the same reaction with alternative substrates) to catalytic ambiguity (catalysis
of different reactions with the same substrate) (Copley 2003; Khersonsky et al.
2006; Tokuriki and Tawfik 2009; Babtie et al. 2010; Jia et al. 2013). In some cases
promiscuity can be condition dependent, with the specific reactions and substrates
differing depending on the local chemistry. Even completely randomly designed
proteins have a high probability of having inherent functions, as they often harbor
surface pockets capable of a variety of catalytic activities (Skolnick and Gao 2013).

Although the cost of enzyme promiscuity for cell performance and fitness re-
mains unclear, its ubiquity implies that when confronted with new biochemical
challenges, adaptation need not await the mutational origin of new functions from
scratch. Indeed, despite the relatively low kinetic rates of promiscuous interactions,
they are still generally orders of magnitude greater than rates of noncatalyzed re-
actions, thereby providing a well-endowed (if far from perfect) starting point for
adaptive exploitation. Not surprisingly, it has been repeatedly found that given
sufficient selection pressure and a large enough population size, cells are capable
of evolving novel metabolic features in remarkably short periods of time (often in
< 1000 cell divisions in laboratory evolution experiments).

Often, these sorts of experiments start with complete deletions of a key enzyme,
and then reveal the emergence of compensatory structural and/or regulatory changes
at seemingly unrelated loci (Kim et al. 2010; Blank et al. 2014). Evolutionary ad-
vancement typically initiates with the fortuitous appearance of just a few mutations
enhancing a baseline level of promiscuity followed by a relatively rapid remodeling
of the catalytic core (Matsumura and Ellington 2001; Copley 2014, 2020; Kim et
al. 2019; Morgenthaler et al. 2019). Other long-term evolution studies with E. coli
have established novel pathways for the uptake and utilization of nonnative carbon
resources, through broadened substrate utilization mechanisms involving specific
enzymes (Boronat et al. 1983; Lee and Palsson 2010) and/or by the emergence of
novel transporters for resource uptake (Blount et al. 2012; Quandt et al. 2014).



8 CHAPTER 19

With a > 3-billion year legacy of evolution distributed over countless proteins
in an enormous number of phylogenetically independent lineages, there may be few
enzymatic reactions whose evolution is absolutely dependent on de novo mutations.
Nowhere is the evidence for this more striking than in the field of industrial enzy-
mology, where substantial progress has been made in developing enzymes with novel
specificities, activities, and stability, again typically starting with pre-existing pro-
teins with promiscuous functions and progressively modifying these via strategies
involving random mutagenesis and screening and/or directed evolution (Johannes
and Zhao 2006; Hult and Berglund 2007; Brustad and Arnold 2011; Bornscheuer et
al. 2012; Abatemarco et al. 2013).

Pathway Flux Control

The construction/deconstruction of metabolites often involves a series of steps car-
ried out by different enzymes, the glycolytic pathway being one of many notable
examples (Figure 19.3). This raises questions about the degree to which the overall
flux rate of the final product is dictated by the properties of the individual pathway
constituents. Some aspects of these issues can be evaluated by treating the flux of
metabolites through a pathway as a steady-state process with the metabolite enter-
ing the pathway having a constant concentration (as would be the case with a stable
rate of nutrient intake) and no feedback inhibition from the final product. Under
such a framework, the internal metabolites in the pathway will also be maintained
at equilibrium concentrations, so that the rate of entry into the pathway must equal
the rates of flux through each subsequent step, including the final output from the
system.

As outlined in Foundations 19.2, the total flux rate through a linear pathway is a
function of the enzyme kinetics operating at each step. The transition rates between
all pairs of adjacent metabolites are in turn defined by both the concentrations and
the biochemical features of each enzyme in the pathway. The general expression for
the equilibrium flux rate is a fairly complicated function of the features at individual
steps, showing that there are innumerable ways to regulate overall pathway flux.
However, one fairly simple question can be asked (and potentially answered) — How
dependent is the overall flux rate on the features of enzymes at successive positions
in the pathway? Mathematical analysis (Foundations 19.3) leads to the prediction
that the sensitivity of the overall flux rate declines dramatically (exponentially) with
increasing downstream position of enzymes in the pathway. This prediction appears
to also hold for segments of branched pathways, with enzymes appearing earlier in
branches being under stronger selective constraint (Rausher 2012). If this hypothesis
is correct, enzymes higher up in a pathway should exhibit signs of stronger selection
for the level of molecular refinement.

Pathway position and the strength of selection. Although there is need for
more comparative work, the existing data are at least superficially consistent with
this expectation. For example, consistent with the flux-control model, for the linear
pathways for amino-acid biosynthesis in E. coli, the response rates and the maximum
response levels to amino-acid depletion decline with the position of enzymes in the
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pathway (Zaslaver et al. 2004). In the anthocyanin production pathway in plants,
upstream enzymes evolve more slowly than those downstream (Rausher et al. 1999;
Lu and Rausher 2003), and this pattern has been observed repeatedly with other
biosynthetic pathways in plants and other eukaryotes (Vitkup et al. 2006; Ramsay et
al. 2009; Wright and Rausher 2010). Arguably, these differences reflect a reduction in
the efficiency of purifying selection operating to remove mildly deleterious mutations
from downstream genes. Genes whose products are associated with pathways with
higher flux rates also exhibit low rates of amino-acid sequence evolution (Colombo
et al. 2014).

The significant influence of pathway position is also illustrated by numerous
studies in yeast and mammals showing that genes whose products have more in-
teracting partners evolve more slowly than those with fewer interactors, i.e., are
more constrained from accepting amino-acid changes (Fraser et al. 2002; Vitkup
et al. 2006; Yang et al. 2009; Montanucci et al. 2011). The only known excep-
tion to the predicted pattern arises in a signal-transduction pathway in Drosophila
(Alvarez-Ponce et al. 2009). Such patterns are consistent with the general flux-
control model, given that highly connected genes must on average enter earlier into
pathways than more downstream genes with fewer interacting partners. It should be
noted, however, that enzymes entering into a pathway upstream of a large number
of branchpoints will also tend to have more pleiotropic effects, which could magnify
the overall strength of purifying selection for reasons other than pathway location
and flux control (Ramsay et al. 2009).

Finally, this prediction of the evolution of greater control of overall pathway
flux by upstream enzymes is not absolute. All other things being equal, changes
in upstream enzymes are likely to be more effective. But all other things may not
always be equal. For example, some enzymes may have architectures that make them
more or less vulnerable to change for reasons unassociated with pathway position,
and enzymes that are utilized in multiple contexts may be constrained with respect
to overall cellular concentrations.

Speed vs. efficiency. Beyond the issue of the relatively low catalytic rates of
many enzymes, most catabolic pathways are much less efficient at extracting energy
from substrate molecules than seems possible. For example, glycolysis, a significant
mechanism for ATP production in most cells, makes just two ADP-to-ATP conver-
sions per glucose molecule consumed, whereas the energy contained within glucose
is sufficient for up to four such conversions. As a consequence, as glycolysis converts
single glucose molecules to two lactic acid molecules, only about 50% of the energy
released is restored in the form of ATPs produced, the remainder being lost as heat
to the environment (as will be noticed in any well-nourished compost pile).

Given that energy can be hard to come by, it would seem that metabolism
would wring as much energetic advantage out of feed molecules as possible, so why
is so much change left on the counter? One possibility, outlined in Foundations
19.3, relates to the intrinsic tradeoff between the rate of a chemical reaction and the
efficiency of product formation.

As noted above, assuming constant concentrations of substrate and product
molecules, a system of metabolic reactions will reach a steady-state flux rate, with
the rate of resource consumption being balanced by the rate of product output. Just
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as the rate of diffusion of molecules across a boundary layer is proportional to the
concentration gradient, the rate of flux through a chemical reaction is proportional
to the energy gradient across the pathway. Thus, with increasing efficiency of energy
extraction, there is reduced flux through the overall system, the result being that the
total rate of energy harvesting (the product of the flux rate of the carbon source and
the efficiency of conversion to ATP per molecule consumed) is maximized as some
intermediate level of efficiency. In the case of glycolysis, the flux rate is maximized
when ~ 2 ATPs are produced per glucose consumed (Foundations 19.3). Whereas,
in principle, four ATPs could be produced from the energy of one glucose molecule,
this would reduce the total rate of ATP production by 90%. Thus, energy dissipation
in terms of heat loss seems to be an intrinsic requirement if natural selection is to
maximize the rate of flux as opposed to the efficiency of resource utilization.

Note that this kind of pathway outcome represents a kind of digital trait in cell
biology. One molecule of glucose might yield 1, 2, 3, or 4 ATPs, but not 1.5 or
2.5, even if such an output might be mathematically optimal. Glycolytic conversion
of glucose to lactic acid yields ~ 205 kJoules/mol glucose consumed, whereas each
conversion of ADP to ATP stores 50 kJoules/mol. Fortuitously perhaps, the optimal
(but not possible) rate of ATP production of 2.05 per glucose molecule (Foundations
19.3) is very close to the realized value of 2, and ~ 25% better (in terms of the total
ATP production rate) than would be the case if 1 or 3 ATPs were produced. In
principle, however, depending on the overall energetics of a pathway, the optimum
strategy of energy harvesting could be further from the digital possibilities (e.g.,
2.50 in the previous example, rather than 2.05). Such deviations, which are likely
larger for some substrate types, represent a real limitation of biological systems.

Although concepts of evolutionary tradeoffs or constraints pervade the evolu-
tionary ecology literature, for the most part such invocations are at best based on
intuition (which need not be correct) or at worst entirely ad hoc. Justified or not,
such arguments necessarily follows whenever one assumes that natural selection has
unlimited power, save for biophysical constraints. Here, however, we are confronted
with real compromises derived from first principles. These kinds of speed vs. effi-
ciency tradeoffs exist in a number of other contexts in cell biology. For example,
microbes that exhibit high yields per carbon molecule consumed also have lower
levels of heat dissipation (von Stockar and Liu 1999). Wagoner and Dill (2019) have
considered this kind of trade-off for various molecular machines, finding that cases
such as ATP synthase, optimization has placed a premium on efficiency, perhaps
not surprisingly given that the main mission of this machine is energy (ATP) pro-
duction. (In contrast, glycolysis produces intermediate metabolites that serve as
precursors for various biosynthetic pathways).

Pathway Expansion and Contraction

One of the most striking aspects of metabolism, at least to a nonbiochemist, is
the large number of incremental pathway steps often used to accomplish what su-
perficially seem to be relatively simple molecular alterations. Many enzymes pro-
duce intermediate metabolites whose sole role is to be passed on to another type
of enzyme for further processing. Consider, for example, glycolysis, which requires
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ten separate enzymes to convert one six-carbon/six-oxygen glucose molecule to two
three-carbon/three-oxygen pyruvates (Figure 19.3).

In the case of glycolysis, a few of the intermediates do serve as precursors for
other pathways for building-block production, but pyruvate is a key entry point for
cellular energy production and the ten steps to get there might seem excessive. How-
ever, Bar-Even et al. (2012) argue that intrinsic constraints of biochemistry (ther-
modynamic limitations, limited availability of enzymatic mechanisms, and physic-
ochemical properties of pathway intermediates) make any alternative routes from
glucose to pyruvate implausible. In other words, their view, which was extended to
all of central metabolism by Noor et al. (2010), is that given the evolved structure
of biochemistry and the intermediate metabolites that must be relied upon, there is
no shorter pathway between glucose and pyruvate.

Of course, this begs the question as to why biochemistry evolved to have such
a structure. As will be noted below, there are cases in which individual proteins
are capable of carrying out multiple reactions. Moreover, as it is highly unlikely
that the extended catabolic and anabolic pathways known in today’s organisms
were present at the moment of life’s origin, deeper questions concern how complex
metabolic pathways become assembled evolutionarily. As an entrée to this particular
problem, we will start with a consideration of the theoretical issues, and then make
a transition to empirical data bearing on the theory.

Stochastic meandering of pathway architecture. Consider the situation out-
lined in Figure 19.4, where a focal resource, S, is potentially obtainable either from
the environment or via input from some other cellular activity that produces a
precursor metabolite P, which in the presence of an appropriate enzyme can be
converted into S. If P is present in sufficient quantity, the shuttling of a fraction
of an appropriately converted product (S) to a downstream pathway might be an
advantageous strategy. The addition of an enzymatic mechanism for producing and
feeding P into a pre-existing pathway would be viewed as a forward or backward
extension depending on one’s perspective. Either way, if the initial ability to obtain
S directly from the environment is lost, the pathway will have increased in length.

Finally, as discussed in other contexts in previous chapters, provided there are
nonzero probabilities of forward and reverse evolutionary transitions between all
adjacent pathway states, for a certain set of conditions there is a steady-state prob-
ability that a population will reside in any one of the alternative states if it were to be
sampled at enough intervals over evolutionary time (Foundations 19.4). Borenstein
et al. (2008) provide evidence for such evolution, showing that the turnover rate of
usage of external precursor compounds (upstream metabolites that cannot be syn-
thesized and are exogenously acquired from the environment) is substantial among
microbes, with phylogenetic shifts likely driven by environmental availabilities of
alternative substrates.

To determine the population-genetic and ecological conditions that are most
conducive to the evolution of the three alternative pathways in Figure 19.4, two
basic issues need to be considered: 1) the relative selective advantages of the alter-
native pathways; and 2) the relative rates of origin and loss of pathway links via
mutational mechanisms. As outlined in Chapter 5, the transition rate between two
adjacent states is equal to the product of the numbers of relevant mutations arising
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per generation in the population and their probability of fixation. The long-term
probabilities of occupancy of the alternative states are then functions of the relative
biases of mutation and selection. If the bias in mutation pressure in one particular
direction is sufficiently strong relative to any opposing selection pressures, the state
of the population will be driven primarily by mutation, with the most frequently
occupied state not necessarily being that which yields the highest fitness.

Three factors can contribute to the differential fitness of the pathways illustrated
in Figure 19.4. First, the direct effects of resource S on fitness must be considered.
If Rg is the amount of resource available for direct uptake, and Rp is the additional
amount that can be added by the novel enzymatic step, then (Rs + Rp) is the to-
tal amount of resource available to a mutant possessing both input mechanisms.
Assuming that fitness, W(R), is an increasing function of resource availability, ap-
proaching an asymptotic maximum value at high R (Figure 19.5), then network 2
has the highest direct payoff, whereas that of pathway 3 can be greater or smaller
than that of pathway 1 depending on the relative availability and convertibility of
precursor P. Because natural selection operates on relative fitnesses, it is sufficient
to denote the direct selective advantages of pathways 1, 2, and 3 as deviations
from the maximum (state 2) value: —ry, 0, and —r3. The magnitudes of the two
negative coefficients will depend on the resource availability via the nonredundant
pathways, asymptotically approaching zero as resources approach saturating levels,
i.e., as Rs, Rp — o0, and W(R) plateaus.

Second, each pathway will incur a baseline cost in terms of the required energetic
investments for the production and maintenance of the enzymatic machinery and/or
acquisition of any additional cofactors needed for uptake/production of S. These
costs, which can be denoted —c¢y, —(¢1 + ¢3), and —cg3, will necessarily be greater for
pathway 2.

Third, each pathway can be silenced by degenerative mutations. Let u; be the
rate of mutational loss of the enzymatic connection with the environmental source
of S, and wusz be the rate of mutational loss of the connection to P. Assuming the
final product to be essential, for pathways 1 and 3, respectively, a fraction of u; and
uz newborn individuals are eliminated by selection, as they imply the loss of access
to S. On the other hand, single deactivating mutations incurred by the redundant
state (2) do not lead to the inviability of individuals, but simple transformation to
either state 1 or 3.

Taking all three factors into consideration, the selective disadvantages of the
three pathways are s; =ri; +c¢1 +uy, S92 =1 +c3, and 83 =13+ C3 + us. The key point
is that the relative fitnesses of alternative mechanisms of resource acquisition are
functions of: 1) the amounts of resource directly (S) and indirectly (P) available; 2)
the bioenergetic costs of building and maintaining the two alternative mechanisms;
and 3) the mutation rates to defective phenotypes. The redundant pathway (2) is
advantageous with respect to resource acquisition and mutational vulnerability, but
more costly with respect to maintenance. Not included in this expression is one
other possibility — the precursor molecule P might have a pre-existing function in
the cell, in which case allocation of a fraction of P towards the production of S could
impose a cost via the primary function of P, which would detract from the fitnesses
of states 2 and 3.

There are two additional points to consider. First, as noted in Chapters 4 and
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5, a key issue is the ratio of the magnitude of the strength of selection to the power
of drift, N.s;, where N, is the effective population size (Foundations 19.4). This
term influences the probability distribution of alternative states exponentially, as
elNesi which is the ratio of fixation probabilities for mutations entering and leaving
class i. When N,s; < 1/, eNesi ~ 1.0, showing that selection is ineffective unless the
effective population size is sufficiently large.

Second, the steady-state probabilities of alternative pathways also depend on
the ratios of rates of gain and loss of the end states by mutation. The essential result
is that relative to the intermediate (redundant) state 2, the probability of each of the
end states is simply defined by the net pressure of mutation and selection producing
versus exiting these states (Foundations 19.4). In the extreme case of effective
neutrality (all N.s; < 1), the probabilities of alternative states depend only on the
degree of mutation bias.

Based on these considerations, several conclusions can be drawn (Figure 19.6).
First, because the rate of mutational production of a new mechanism of resource
acquisition is likely to be substantially smaller than the mutational rate of inac-
tivation, there is a tendency for mutation to drive the redundant pathway to the
two extreme states. This means that unless the selective advantage of the redun-
dant state is much larger than the power of drift, and also large enough to offset
mutational pressure, populations will most likely reside in one of the end states. Sec-
ond, the nonredundant pathway that is most likely to emerge (uptake-dependent vs.
precursor-dependent) depends on the relative magnitudes of the ratios of loss:gain
rates of the two types.

Finally, it is important to note that all of the preceding arguments assume a
nonrecombining genome, such that offspring have genotypes identical to those of
their parents in the absence of mutation. Suppose, however, that recombination
can occur between the genes underlying the two alternative pathways. Of the three
types of encounters between alternative genotypes, 1-3, 1-2, and 2-3, only the 1-
3 combination results in novel progeny genotypes. This is because a redundantly
encoded genome recombined with a single-feature genome still results in progeny
with a 1:1 ratio of parental features, whereas a 1-3 recombination event results
in one genome of type 2 and one completely lacking in function. This potential
for recombinational breakdown between single-feature genotypes has the potential
to promote the maintenance of genotypes with redundant acquisition pathways.
However, such an effect can be partially or entirely offset if the redundant pathway
has sufficiently low fitness from a metabolic perspective, or if the population is small
enough that the essential ingredient for its operation (the simultaneous presence of
state 1 and 3 genotypes) is absent (Lynch 2007).

Although this model provides a glimpse into the understanding of how simple
single-step changes might lead to among-species differentiation in metabolic path-
ways, many metabolic pathways go far beyond the simple systems just explored.
Consider, for example, the mysteries posed by the amino-acid biosynthetic path-
ways (Figure 19.7). First, there is the matter of the order of emergence of the
pathways leading to each of the twenty amino acids. Only three of these (gluta-
mate, aspartate, and alanine) are a single step removed from a metabolic precursor,
with several others being derived from these primary products via one or more addi-
tional steps. For example, asparagine is one step removed from aspartate, whereas
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lysine, methionine, and threonine are several steps removed, and isoleucine is still
more steps removed from threonine. Is the distance of each amino acid from central
metabolic pathways an indicator of its age, i.e., are the more derived amino acids
evolutionarily younger?

Second, many of the intermediate precursor products leading to the produc-
tion of downstream amino acids simply serve as pathway stepping stones with no
other function. If this is the case, how could the steps leading to such products
be established evolutionarily prior to completion of the pathway, if only the end
product is of utility? As a potential solution to this dilemma, Horowitz (1945) pro-
posed a retrograde model for the evolution of biosynthetic pathways, postulating
that upstream steps to a pathway are added as the environmental availability of
downstream metabolites become limited. Under this hypothesis, the final step in a
pathway is the first to have been acquired, with the preceding step being established
second, and so on. Such a model assumes that molecular intermediates were at one
time freely available in the environment (as in the progression in Figure 19.4), but
is challenged by the fact that intermediate metabolites often exhibit high levels of
chemical instability.

The origin of novel enzymes. Although the theory outlined above clarifies the
population-genetic requirements for shortening or lengthening metabolic pathways,
a deeper appreciation of the actual biological underpinnings of such transitions is
necessary to achieve a mechanistic understanding of how pathways expand. In
the preceding example, a transition from state 1 to 2 requires the emergence of
an enzymatic function for converting precursor molecule P to the final resource S,
whereas a transition from state 3 to 2 requires the appearance of a mechanism for
direct acquisition of S. As it is quite unlikely that new molecular mechanisms arise
de novo in highly refined states, more gradual mechanisms must be sought.

As already noted, all enzymes make errors (i.e., bind to inappropriate sub-
strates) at some low frequency. A fortuitous consequence of such promiscuity is the
predisposition of many enzymes to respond evolutionarily in the face of sufficient
selection pressure to utilize alternative substrates. On the other hand, because the
refinement of a previously deleterious side effect may come at the expense of the
pre-existing primary function, additional genomic changes will typically be essential
to allow the emergence of an efficient novel function. Gene duplication provides a
powerful route for evolutionarily remodeling an enzyme without relinquishing key
ancestral functions, by allowing each copy to become more specialized to individual
tasks (Copley 2012).

As discussed in Chapter 6, for the simplest case in which a gene is completely
duplicated, it will go through an initial phase of functional redundancy, and unless
maintained by selection for increased dosage, will generally suffer one of three fates:
loss via a nonfunctionalizing mutation; preservation by subfunctionalization (with
the two sister copies becoming specialized to independently mutable subfunctions);
or preservation by neofunctionalization (evolution of an entirely novel function by
one copy, and retention of the original key functions by the other copy).

As noted above, at least in the case of metabolic-function evolution, there may
be very few cases of pure neofunctionalization, given the promiscuity of individual
enzymes. This would mean that almost all cases of long-term preservation of du-
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plicate metabolic genes are likely driven by either dosage demands or selection for
refinements and losses of pre-existing functions (i.e, enzyme diversification). The
latter mechanism was, in fact, suggested by Kacser and Beeby (1984; see also Pfeif-
fer et al. 2005) as a potential explanation for how the earliest enzymes (presumably
with much lower substrate fidelity than today’s enzymes) might have diversified in
function. When a gene is amplified in copy number, this provides additional mu-
tational targets (free of compromising constraints) for the refinement of at least
one copy to alternative, more specialized subfunctions. Quite similar arguments for
the origin of new functions were subsequently promoted by Piatigorsky and Wistow
(1991), Hughes (1994), and Bergthorsson et al. (2007).

There are some subtle distinctions between alternative verbal models that have
suggested in this area. For example, Hughes’ (1994) adaptive-conflict hypothesis
envisions situations in which an ancestral gene carries out two or more essential
but compromised functions that then become specialized after duplication, whereas
Bergthorsson et al. (2007) focuses more on situations in which a specialized ancestral
gene acquires a novel mutation inducing weak functional promiscuity, which then
undergoes adaptive refinement following a duplication event that increases its expo-
sure to natural selection by amplifying its expression level. Both hypotheses contain
an element of neofunctionalization, and both involve a sort of subfunctionalization,
the primary difference being the degree of essentiality of the original duplicate func-
tions.

Voordeckers et al. (2012) obtained strong evidence for just such an innovation-
amplification-divergence scenario in yeast where an ancestral glucosidase protein,
active primarily with maltose, had weak promiscuous attraction to isomaltose. Upon
duplication, one copy lost maltose activity while becoming optimized for isomaltose
in a process that involved just three key amino-acid changes. Likewise, Blount et
al. (2012) found that the evolution of the ability to utilize citrate in an experimen-
tal population of E. coli was initiated by a regulatory change that increased the
expression of a citrate transporter, followed by amplification to a multi-copy array
of the modified locus. In a comparative study that involved the resurrection of an-
cestral states, Rauwerdink et al. (2016) found that plant cyanohydrin lyases, which
produce insecticidal cyanides, evolved from an initially weak promiscuous side effect
of plant esterases, only becoming refined after duplication. Significantly, all of these
studies illustrate dramatic shifts in metabolic functions being driven by just a few
mutational changes.

Pathway Participant Remodeling

Although most of the pathways associated with central metabolism are typically
presented in biochemistry textbooks as invariant, formal analyses have generally
been carried out in no more than a handful of taxa. Yet, existing comparative anal-
yses amply demonstrate that the structures and constituents of metabolic pathways
sometimes vary dramatically among species. As an entrée into this area, we now
consider how a cellular process even as fundamental as amino-acid biosynthesis can
be subject to substantial modifications among phylogenetic lineages.

Two tyrosine-biosynthesis pathways are known, both starting with prephenate
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as a precursor, but having different intermediates (Jensen and Pierson 1975; Song
et al. 2005). Both pathways involve transamination and dehydrogenation steps, but
in reverse order (Figure 19.8, top). Among bacteria, many different lineages use one
or the other pathway, whereas species that are capable of both may employ a single
broad-specificity enzyme. The cofactors deployed in the key reactions, e.g., NADT
vs. NADPT, are also subject to phylogenetic changes.

Cysteine is produced by at least three different pathways in various organisms,
two of which involve completely nonoverlapping reactions. In animals, the sulfhydryl
group of cysteine is derived from methionine, whereas in plants and prokaryotes that
have been studied, inorganic sulfide provides the source (Figure 19.8, middle). In
the budding yeast S. cerevisiae, there is a modification of the animal pathway, such
that the methionine — homocysteine step is replaced by two others. However, there
is a good deal of variation among fungi, with the fission yeast S. pombe having the
pathway initiating with serine, and many species having both types of pathways
(Hébert et al. 2011).

Lysine biosynthesis provides still another example of pathway diversification.
Two major modes of production exist for this amino acid: the diaminopimelate
(DAP) pathway and the a-aminoadipate (AAA) pathway, the first starting from
aspartate and the second from a-ketoglutarate, and with no overlap in the interme-
diate products. Both pathways are quite long, typically with eight to nine steps,
although short-length variants that bypass some internal steps are known (Nishida
et al. 1999; Hudson et al. 2006; Curien et al. 2008; Torruella et al. 2009). The DAP
pathway (and variants of it) is present in bacteria, plants, and some algae, and the
AAA pathway has been found in fungi, a few bacteria, and some protists. A few
taxa may have both pathways, and lateral gene transfer has been suggested (Nishida
and Nishiyama 2012).

Perhaps the most spectacular example of diversification of amino-acid biosyn-
thetic pathways involves methionine production (Figure 19.8, bottom). In all cases,
the starting point is homoserine, but three alternative first-step metabolites can
be produced (acetylated, phosphorylated, or succinylated homoserine). From these
points, the addition of cysteine can lead to cystathione (a sulfur source) in a single
step, which is then converted to homocysteine in the penultimate step to methio-
nine. However, single-step pathways from both acetyl-homoserine and succinyl-
homoserine to homocysteine also exist, utilizing HoS and bypassing cystathione
production. Finally, there are two alternative final-step mechanisms for convert-
ing homocysteine to methionine. Taken together, these observations suggest the
possibility of as many as ten partially overlapping pathways. At least eight of these
have been observed (Gophna et al. 2005), and some microbial species are capable
of multiple production pathways. As some archaea appear to be completely lack-
ing proteins for homoserine activation, additional pathways likely await discovery.
Moreover, evolutionary shifts between alternative methionine biosynthetic pathways
do not appear to be difficult. For example, a single amino-acid change is sufficient
to alter the first step of homoserine activation. As a consequence, these first-step
enzymes are not monophyletic with respect to function (Zubieta et al. 2008).

These four examples are by no means an exclusive list of variations in amino-acid
biosynthesis pathways. For example, although glutamate is one of the simpler amino
acids, being just one step (the addition of an NHj) removed from a-ketoglutarate,
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the source of NHj in the reaction can vary, and the enzyme involved (glutamate
synthase) utilizes different cofactors in different phylogenetic contexts (Dincturk and
Knaff 2000; Suzuki and Knaff 2005). Just within the bacterial genus Pseudomonas,
two nonoverlapping pathways are known for phenylalanine production, with some
species having one of the pathways and others having both (Byng et al. 1983).
The first step in the biosynthesis of arginine is the acetylation of glutamine, but
this is done by apparently unrelated enzymes in various phylogenetic lineages (Xu
et al. 2007). The branchpoint intermediate in the path leading to methionine
vs. threonine production is O-phosphohomoserine in plants, whereas it is one step
higher in E. coli and S. cerevisiae, at homoserine (Curien et al. 2008). There are
at least two largely nonoverlapping pathways for serine production (Melcher et al.
1995; Ho et al. 1998; Shimizu et al. 2008), three for isoleucine (Hochuli et al. 1999),
and two for glycine (Sakuraba et al. 2005; Ramazzina et al. 2010). Finally, the
tryptophan operon, which is often used as a textbook example of gene regulation,
shows extensive variation in modes of regulation among bacterial species, with some
having fusions of the various genes in the pathway (Xie et al. 2003; Merino et al.
2008).

This broad set of examples, mostly drawn from prokaryotes but by no means
exclusive to amino-acid biosynthesis (e.g., Hoshino and Gaucher 2018), highlights
the flexibility of cells to evolutionarily modify the underlying machinery associated
with key metabolic processes, presumably while keeping the overall performance of
the pathway nearly constant. Several additional points are clear. First, even the
pathways that one might expect to be highly conserved are subject to complete
remodeling to the point of sharing no reaction steps. Second, even when species
share the same pathway structure, the participating enzymes can be nonortholo-
gous. Third, redundant pathways can often coexist in the same organism. Finally,
alternative pathways often differ in efficiency (Du et al. 2018), e.g., in utilization of
ATP, and it remains unclear as to why energetically suboptimal variants exist.

These general observations, combined with the common existence of enzyme
promiscuity and gene duplication, lead to a plausible set of scenarios for metabolic
pathway evolution involving intermediate stages of functional redundancy, fully con-
sistent with the model outlined above (Figures 19.4-6). Many variants of such a
model can be envisioned, all of which fit well within the general theme of the patch-
work model of pathway evolution (Ycas 1974; Jensen 1976; Copley 2000), under
which enzymes with substrate ambiguity can sometimes be stitched together to
establish novel pathways and/or to confer redundancy with preexisting molecular
mechanisms. We now consider the underlying issues in somewhat greater detail,
again motivating each discussion with a series of examples, primarily to emphasize
just how common pathway remodeling is.

Nonorthologous gene replacement. As alluded to in the previous section, in
addition to the rewiring of pathway structure, many examples are known in which
metabolic pathway structures remain stable, while the underlying participants turn
over. As a case in point, consider glycolysis, the major path to sugar breakdown
in the cells of eukaryotes and many prokaryotes (Figure 19.3). Involving a series of
ten reactions, this pathway converts six-carbon glucose molecules into three-carbon
pyruvate molecules, which can then be further processed (e.g., by entering the citric
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acid cycle, or by being reduced to lactic acid).

Despite the centrality of glycolysis, extraordinary variation exists in the nature
of all of the major players, with comparative analyses suggesting a very complex
evolutionary history both within and among the major domains of life (Canback et
al. 2002; Oslancova and Janecek 2004; Siebers and Schonheit 2005). For example,
bacterial phosphofructose kinase (step 2) and phosphoglycerate kinase (step 7) ap-
pear to be nonorthologous to the homologous enzymes used in eukaryotes (Galperin
et al. 1998), and most of the pathway enzymes in archaea appear to be nonhomolo-
gous to those in either eukaryotes or bacteria (Verhees et al. 2001; Kawai et al. 2005;
Siebers and Schoénheit 2005). Two types of fructose bisphosphate aldolase (step 4)
are known, each deploying a different molecular mechanism, one group in animals
and land plants, and the other in fungi, some algae, and bacteria. Various protist
lineages harbor a diversity of sequences from both classes, with the complexity of the
phylogenetic distribution strongly suggesting substantial ancient horizontal transfer
(Siebers et al. 2001; Sanchez et al. 2002; Rogers and Keeling 2004; Allen et al. 2012).
Clear examples of inter-kingdom horizontal transfers also exist for glyceraldehyde-
3-phosphate dehydrogenase (step 6) (Qian and Keeling 2001; Takishita and Inagaki
2009). Finally, phosphoglycerate mutase (PGM, step 8) is found in two forms,
apparently unrelated to each other and also differing in cofactor dependency (Li-
apounova et al. 2006). Several members of the archaea and bacteria harbor both
types of PGM, consistent with the idea of the ancient origin of the two types (van der
Oost et al. 2002; Johnsen and Schonheit 2007). This list could be expanded, but by
now the central point should be clear — as with many of the amino-acid biosynthetic
pathways, across the Tree of Life probably all of the enzymes involved in glycolysis
have evolved more than once from apparently unrelated ancestral enzymes and then
been substituted for their nonorthologous analogs.

Multiple mechanisms exist for such nonorthologous gene replacement. As noted
above, phylogenetic analyses clearly implicate horizontal gene transfer in a num-
ber of instances, although most of the well-established examples are restricted to
quite ancient periods in the Tree of Life. Although inter-kingdom transfers must be
confronted with a number of selective challenges, these may be eased for enzymes
universally conserved to have the same function. Indeed, occasions might arise in
which the enzyme from a potential donor species has acquired slightly beneficial
kinetic, assembly, and/or stability properties relative to that of the recipient, e.g.,
because of a population-genetic environment more conducive to efficient selection.

One situation that can encourage nonorthologous gene replacement (including
that via horizontal transfer) arises during periods in which a resource that must nor-
mally be synthesized becomes freely available in the environment (e.g., Figure 19.4).
Such a condition might relax selection on the maintenance of the internal catabolic
pathway, thereby leading to the effectively neutral loss of one or more components
via degenerative mutations. The resultant condition, known as auxotrophy, which is
an inability to synthesize an essential organic compound. Consistent with such a sce-
nario, it is common for some isolates within bacterial species to be missing parts of
particular pathways and hence deficient with respect to certain kinds of metabolism
(Monk et al. 2014). This phenomenon that has been repeatedly seen in endosym-
biotic bacteria that inhabit the well-provisioned cells of insects (McCutcheon and
Moran 2007), an extreme example being chimeric biosynthetic pathways in which
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different enzyme components reside in different genomes of the mutualists (Bublitz
et al. 2019). The enzymes most likely to be lost involve steps (usually downstream )
with minimal interactions with other pathways (Hittinger et al. 2004; Pal et al.
2006). Reintroduction to an environment lacking the resource would then impose
strong selection for pathway reconstruction, e.g., replacement of a missing step with
a duplication from a nonorthologous gene with a suitably promiscuous function.

As noted above, further opportunities for pathway diversification exist when
a broad-specificity enzyme is duplicated, particularly if different subfunctions are
independently mutable, as this provides a route by which a gene from one path-
way might move to another. By this means, through progressive gains and losses
of subfunctions, genes might be free to wander across pathways, provided this is
accomplished in ways that do not erode the operation of individual pathways. For
example, Mycobacterium tuberculosis deploys a bifunctional enzyme in both histi-
dine and tryptophan biosynthesis (Due et al. 2011), and experimental work demon-
strates that simple amino-acid substitutions can establish tryptophan-pathway ac-
tivity from histidine-pathway genes (Leopoldseder et al. 2004; Nésvall et al. 2012).
In a number of species that have experienced genome reductions, one or the other
of the amino-acid biosynthetic paths has been lost, and the bifunctional enzyme has
reverted to monofunctionality (Juarez-Vazquez et al. 2017).

Notably, indirect evidence suggests that entire pathways may sometimes have
arisen by duplication of most or all constituent proteins. For example, Velasco et al.
(2002) suggest that the DAP pathway for lysine production is related to the arginine
biosynthesis pathway, in that many of the constituent enzymes appear to be related.
A link between the AAA pathway for lysine and the leucine biosynthesis pathway
has also been suggested, leading to the idea that pathways for the production of
all three amino acids — leucine, arginine, and lysine — share a common ancestry,
possibly derived from a state in which all three were synthesized by enzymes with
lower specificity (Nishida et al. 1999; Miyazaki et al. 2001; Fondi et al. 2007). Re-
markable similarities between key steps in the TCA cycle and the paths for lysine,
isoleucine, and leucine biosynthesis have also been suggested (Jensen 1976). Once
a redundant set of pathways arises, reciprocal loss by subfunctionalization can oc-
cur in descendant sister taxa, leaving little or no record of past redundancy. For
example, Jensen (1985) highlights hydrogenases in bacteria whose ancestral state
involved joint NAD*™ and NADP™ cofactor specificity but became fixed for one or
the other alternatives in descendant sister taxa.

Returning to the situation with the glycolytic pathway, the potential to shift
pathway affiliations seems particularly large, given the widespread moonlighting of
such enzymes in functions completely unrelated to glycolysis (Kim and Dang 2005).
Just a few examples are noted here. G3PDH (step 6) is known to bind DNA and
telomeres, plays a role in cell-cycle regulation, and has many other functions associ-
ated with nuclear export, membrane fusion, phosphorylation, and DNA repair (Sei-
dler 2013). Many examples are known in which FBP (step 4) and triosephosphate
isomerase (TPI, step 5) are involved in membrane fusion in pathogenic bacteria
(Gozalbo et al. 1998; Modun and Williams 1999; Alvarez et al. 2003; Tunio et al.
2010). One of the two hexokinase (HEX, step 1) genes in S. cerevisiae also acts as a
repressor of glucose metabolism; and HEX has been implicated in anti-apoptotic ac-
tivity in mammals. Phosphopyruvate hydratase (PPH, also known as enolase, step



20 CHAPTER 19

9) has also been found to have numerous secondary functions — it is a major lens
protein in some vertebrates (Wistow et al. 1988), plays a role in thermal tolerance in
yeast (Iida and Yahara 1985), and can be involved in cell-cell communication (Miles
et al. 1991; Castaldo et al. 2009) and transcriptional regulation (Chang et al. 2003;
Kim and Dang 2005).

These kinds of observations extend to each of the remaining enzymes involved
in glycolysis, as well as to many other enzymes involved in central metabolism.
Often ignored, the types of gene loss and substitution implied by nonorthologous
gene replacement have significant implications for the use of biological observations
on the genes in model organisms to infer gene functions in more distantly related
species (Gabaldén and Koonin 2013).

Internal pathway expansion via multifunctional enzymes. A fundamental
feature of biochemical pathways is that consecutive enzymes must interact with one
of the same ligands — the product of an upstream enzymatic reaction becomes the
substrate for the next. Some enzymes exploit this linkage by engaging in two ad-
jacent interactions in a pathway. A good example of such a bifunctional enzyme is
fructose-1,6,bisphosphate aldolase/phosphatase, which in most archaea and many
bacteria is used in gluconeogenesis (the reverse of the glycolytic pathway) to first
convert dihydroxyacetone phosphate (DHAP) to FBP and then to dephosphorylate
the latter to fructose-6-phosphate (Du et al. 2011). Unlike many bifunctional en-
zymes, both reactions are carried out by the same catalytic domain, leading to an
efficient system in which the intermediate metabolite (FBP) is never released.

Situations like this open the opportunity for pathway growth when an ancestral
protein capable of carrying out two steps in a pathway becomes duplicated into
two daughter copies, each of which loses an alternative function, locking the two
into permanent preservation by subfunctionalization. A possible example of such a
situation exists in E. coli, where two consecutive enzymes in the methionine biosyn-
thetic pathway appear to have been derived from a common gene by duplication
that then underwent subsequent specialization (Belfaiza et al. 1986; Parsot et al.
1987). Here, what is done in two steps in E. coli is accomplished by one related
enzyme in S. cerevisiae. It has also been argued that a single enzyme convert-
ing O-acetyl-serine to cysteine is related to the two taking O-acetyl-homoserine to
homocysteine in the methionine pathway (Figure 19.8; Parsot et al. 1987). Con-
secutive genes in the threonine biosynthetic pathway also appear to have arisen by
gene duplication in bacteria (Parsot 1986; Parsot et al. 1987), and similar structures
for several of the sequential proteins in tryptophan biosynthesis suggest a common
ancestry (Wilmanns et al. 1991; List et al. 2011). Arguments have also been made
that a number of the enzymes in the purine biosynthesis pathway have arisen by
duplication and divergence (Kanai and Toh 1999; Zhang et al. 2008).

A few enzymes are known to be capable of catalyzing more than two reactions
(Roy 1999), e.g., dehydroquinate synthase (Carpenter et al. 1998), and carbamoyl
phosphate synthetase (Raushel et al. 1998), either in the same site or with active
sites connected by molecular tunnels. In principle, such enzymes provide rare op-
portunities for an entire pathway to be carried out by a single protein, as well as
for repeated processes of duplication and subfunctionalization to lead to pathway
extension. Of course, there seems to be no reason to rule out the reverse — pathway
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retraction, as a monofunctional enzyme becomes bifunctional by taking on the task
of an adjacent step.

Summary

Virtually all metabolic reactions are carried out by enzymes. Although these
proteins enhance reaction rates by many orders of magnitude above background
rates, their catalytic rates are generally orders of magnitude below the biophysical
limits, suggesting that the degree of perfection is stalled at a drift barrier.

Generally highly specialized for particular functions, most enzymes are also quite
promiscuous, commonly engaging with inappropriate substrate molecules up to
1% of the time. Although this must impose a burden on cells, in the long-run it
also provides a launching pad for the evolution of novel enzyme functions through
the refinement of latent capacities.

Dozens of experimental-evolution studies have demonstrated that, combined with
gene duplication, substrate-utilization promiscuity facilitates the origins of new
metabolic features, commonly via just a few key amino-acid substitutions.

Because individual enzymes generally carry out simple chemical reactions, typi-
cally involving only single chemical bonds, this necessitates the use of complex,
stepwise metabolic pathways in the transformation of organic material.

Theory suggests that the sensitivity of flux rates of metabolic pathways declines
exponentially from the entry-level to final steps in the pathway, and this ap-
pears to be reflected in a relaxation of selection on the amino-acid sequences of
downstream enzymes.

Catabolic pathways are commonly highly inefficient energetically in the sense
that a substantial amount of energy derived from the breakdown of substrate
molecules is simply released as heat rather than converted to bioenergetic cur-
rency (ATP). Flux-rate theory suggests that such inefficiency is an intrinsic re-
quirement for maximizing the speed of product formation. However, the digital
nature of molecular transactions is an intrinsic constraint that necessitates energy
loss.

Despite the near universality of many resource-utilization and biosynthetic path-
ways, both the structure and underlying enzyme participants of such pathways
can differ dramatically among phylogenetic lineages. This suggests the existence
of multiple degrees of freedom for pathway remodeling without significant neg-
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ative fitness consequences. Gene duplication, combined with subdivision and
divergent refinement of ancestral gene functions, plays a central role in such re-
configurations.
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Foundations 19.1. Michaelis-Menten enzyme kinetics. The simplest approach
to enzyme kinetics starts with the assumption that molecules of enzyme (E) and
substrate (S) interact in two steps to yield a product (P). The first step involves the
production of a noncovalent intermediate complex (ES) and is assumed to be reversible,
governed by association-dissociation kinetics (Foundations 13.1). The second step
involves transformation of the substrate into the final product, after which the released
enzyme is free to engage in another reaction. The overall reaction can be described as

E+S=ES—E+P

The intent here is to describe the relationship between the net conversion rate of
S to P and the concentration of S.The rate of product formation is a function of the
three rates associated with the arrows in the preceding formulation. Let k, be the rate
of association of E and S to form ES, kq be the rate of dissociation of ES into E and S,
and k¢ be the catalytic rate of production of P from ES (also known as the turnover
rate). Under the assumption of a steady-state process (e.g., with the concentrations of
all components remaining constant, owing to the constant replenishment of substrate
and recycling of enzyme), the rates of gain and loss of the intermediate state must be
equal, so that
ka[E] [S] = (kd + k‘cat)[ESL (19.1.1&)

where brackets denote concentrations. Note that the rate of production of ES is a
function of the concentrations of the two constituents and the rate of association per
unit concentration. Rearranging, we find that

[ES] = [E[]([SS], (19.1.1b)

where the composite parameter is defined as
Kg = (ka + kcat)/ka- (19.1.1c)

Denoting the rate of production of P as V' = k¢, [ES], substitution of Equation 19.1.1b
for [ES] implies
kcat [E] [S]

V= Ks

(19.1.2)

There is one final complication in that [E] is the concentration of free enzyme,
whereas the more easily measured total amount of enzyme in the system, [Er], is the
sum of the amounts freely circulating and tied up in the enzyme-substrate complex.
Again using Equation 19.1.1b,

[Ex] = [B] + [ES] = [E] (1 + ﬁi) . (19.1.3)

Solving this equation for [E], and substituting into Equation 19.1.2 yields an equation
of the same form presented by Michaelis and Menten (1913),

kcat [ET] [S]

V= Ks+[S]

(19.1.4)

Notably, the derivation utilized above was first presented by Briggs and Haldane
(1925), which although yielding the same mathematical structure, involves some subtle
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distinctions from the approach used by Michaelis and Menten (1913). For interesting
historical commentary on this and other matters, see Gunawardena (2012), as well as
Johnson and Goody (2011), who also generated an English translation of Michaelis
and Menten (1913). Formulae with the same form appear in many other areas of cell
biology (Wong et al. 2018).

There are several notable features of this expression. First, for a constant level of
total enzyme, Equation 19.1.4 predicts a hyperbolic relationship between the substrate
concentration, [S], and the rate of product formation (Figure 19.1). At high substrate
concentrations, V asymptotically approaches a maximum level Vi,ax = kcat[ET], which
shows that k.,; is the maximum rate of product formation per unit of total enzyme
concentration.

Second, K is equivalent to the substrate concentration at which the reaction rate
is half the maximum, as can be seen by substituting Kg for [S] in Equation 19.1.4.
Thus, Kg is usually referred to as the half-saturation constant, although as can be
seen from Equation 19.1.1c, Kg is not mathematically independent of ke,t.

Third, if the catalytic rate ke¢,¢ is much smaller than the dissociation rate kq,
then the former can be ignored in Equation 19.1.1c, yielding Kg ~ kq/k,. This ratio
of dissociation to association rates is usually referred to as the dissociation constant
and often denoted by Kp.

Finally, we note that as [S] — 0, V' — keat[ET][S]/Ks. The ratio ¢g = kcat/Ks is
often referred to as the kinetic efficiency, as it defines the innate capacity of an enzyme
when the substrate is at nonsaturating levels.

Two additional points are worth noting about the Michaelis-Menten equation.
First, inspired by their own kinetic observations and those made earlier by others,
Michaelis and Menten employed a hypothetical intermediate enzyme-substrate com-
plex in their formulation as a means for achieving the hyperbolic relationship between
enzyme reaction rates and substrate concentration, several decades passed before any
such complexes were actually observed. Thus, this early exercise in biochemical mod-
eling is a beautiful example of a theoretical construct predicting a previously unseen
phenomenon. Second, the enzyme pathway deployed assumes that product formation
is irreversible, unlike the ES complex. Although this is a reasonable approximation if P
remains rare (as would be the case if P were consumed in some other cellular process),
as P becomes increasingly common, negative feedback will cause a reduction in the
net forward reaction rate, necessitating further modification of the Michaelis-Menten
formula (Gunawardena 2014).

Foundations 19.2. Evolutionary sensitivity of pathway steps. Metabolic path-
ways often consist of a linear series of steps, each transforming a metabolite to a new
product that then serves as a substrate for a subsequent enzyme. Such a chain can be
represented as follows:

So =81 Sg--rennne = Sp_1 =Sy,

with So denoting the initial substrate, and the S; denoting the intermediate metabolites
en route to the final product S,,. The right/left arrows between metabolites denote the
forward and reverse reactions, which occur at rates k; and k_; between substrates i—1
and ¢. In the following, we will assume that the initial substrate is kept at a constant
intracellular concentration [Sp], and that the final metabolite is utilized (and hence
removed from the cytosol) at rate 7. Assuming that the rates on the transition arrows
in the reaction scheme remain constant, such a system will yield a set of equilibrium
concentrations for each of the metabolites.
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Consider a simple two-enzyme system, for which the time course of concentration
changes can be written as

d[dstl] = ka[So] = (k-1 + k42)[S1] + k-2[S2] (19.2.1a)
dEiStQ] = Fa[S1] = (k-2 +7)[S2] (19.2.1b)

The three terms in the first equation respectively denote the conversion of the initial
substrate to Si, the loss of S; to the two alternative substrates (Sp and S3), and the
gain from the reverse reaction involving So. The steady-state concentrations are found
by setting the derivatives equal to zero and solving the pair of equations,
5 oL+ (/b))
L+ (yKa/k-1) + (v/k-2)

Sa] = K1 K5[So]
2T+ (VK2 /o) + (1/k2)

The terms involving upper-case Ks are the ratios of forward and reverse reaction rates,
often referred to as the equilibrium constants,

Ki = kyi/k_;, (19.2.3)

as they would define the equilibrium concentrations of two adjacent metabolites in the
absence of any other steps in the system,

(19.2.2a)

(19.2.2b)

k;+i[Si_1] = k_l[Sl] (19.2.4)

The rate of flux through the system (i.e., the amount of final product drawn off
for use in cellular functions) is equal to the product of the concentration of the final

metabolite and its utilization rate, v[S2],
Fo VK1 K3 [So)
L+ (vKa/k-1) + (v/k-2)
The two other ﬂNuxcs in the system, from~So to S1 and from Sy to So, occur at net rates
(k+1[So] — k—1[S1]) and (k42[S1] — k—2[S2]), respectively, when the system is in equi-
librium. After substituting the equilibrium concentrations from Equations 19.2.2a.b,

these flux rates are found to be identical to the equilibrium exit rate from the pathway,
Equation 19.2.5, as must be the case for a steady-state system.

Although the algebra gets more tedious with longer pathways, Heinrich and
Rapoport (1974) obtained the general solution for a pathway of length n,

(19.2.5)

n

S = [Sol [] & - —— metl (19.2.6)
i=1 144) (k) [ Em
=1 m=I+1

with the product terms being set equal to 1.0 when m > n. With this expression, the
total flux rate can be written as the product of v and the concentration of S,,,

vSol [T &;
j=1

Ve k) I K

=1 m=Il+1

F= (19.2.7)
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which reduces to Equation 19.2.5 when n = 2. Similar results were obtained indepen-
dently by Kacser and Burns (1973).

We are now in a position to address some key questions regarding the degree to
which the overall flux through a pathway is influenced by the individual component
reactions. To simplify the analysis, we will assume that all of the enzymatic reactions
have equal reversion rates k_ and equilibrium constants K. Because the summation
in the denominator of Equation 19.2.7 is expected to be much greater than 1 (owing
to the forward nature of the pathway), the 1 can be dropped, and substitution of the

constant parameters leads to
kK" [So]

- n—1
> K
i=0
Still further simplification is possible because the equilibrium constant is likely to be

> 1, in which case the final term in the series in the denominator dominates, leading
to

F . (19.2.8a)

F ~ k_K][So]. (19.2.8b)

This shows that provided K is larger than 10 or so, the steady-state flux rate is nearly
independent of the number of steps in the pathway.

Finally, we consider the sensitivity of the flux rate to changes in the enzymes
responsible for the individual steps. Suppose the equilibrium constant for a single step
is multiplied by the factor . Equation 19.2.8a defines F, as the pre-perturbation flux
rate, and F; (the post-perturbation rate) is obtained from Equation 19.2.7 with all
equilibrium constants equal to K, except that for the jth step, which is set to K.
The sensitivity coefficient for step i is then defined to be the fractional change in the
total flux rate relative to its initial value, (F; — F)/F%, scaled by the fractional change
in the equilibrium constant relative to its initial value (z — 1),

F; — F,

TACESI (19.2.9a)

C; =

Substitution of the expressions for F, and F} into Equation 19.2.9a, followed by some

algebra, yields
n—j
>
=0

Cj =1 (19.2.9b)

n—1 ’
DK

1=0

and again assuming K > 1, so that only the final terms in each summation predomi-
nate, this further simplifies to

1
This shows that the relative sensitivity of the flux rate to a change in features influ-
encing K at a particular step (e.g., enzyme concentration, substrate affinity, rate of
reactivity) declines by a factor of 1/K with each increasing step, starting with C; = 1
(complete transmission of the effect) for a change at the first step.

C; ~ (19.2.9¢)

Foundations 19.3. Optimization of the glycolytic flux rate. Glycolysis, a key
energy-generating process found in most cells, involves a linear pathway of ten steps
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starting with a glucose molecule and culminating in the production of two pyruvates
(which can be further reduced to lactic acid) and two ATPs (Figure 19.3). At typical
physiological concentrations of the participating molecules, the glucose to lactic-acid
reaction releases ~ 205 kJoules/mol, whereas each of the ADP to ATP conversions
stores 50 kJoules/mol, meaning that 105 kJoules/mol is simply lost as heat.

Why has such an apparently wasteful process been universally retained, rather
than the production of four ATPs (equivalent to a total of 200 kJoules/mol), or even
three, being squeezed out of the reaction? One explanation is that instead of maximiz-
ing the efficiency of resource utilization, natural selection commonly puts a premium
on the total rate of ATP production, which is a function of both efficiency and speed.
Letting AGgy = —205 kJoules/mol be the energy released by a glycolytic reaction,
AGaTp = 50 kJoules/mol be the amount retained per net ATP produced (the negative
and positive signs denote energy release and gain, respectively), and n be the number
of ATPs produced per glucose molecule, the efficiency of the energy recapture can be

written as
n - AGaTp
N=—x~ 1 -
|AG gy

Thus, in terms of efficiency of resource utilization, just 49% of the energy endowment
of glucose is retained by the organism. (Notably, the anaerobic process of glycolysis
is also much less efficient than aerobic respiration via the Kreb’s (TCA) cycle, which
generates ~ 30 ATPs per glucose molecule (Chapter 17), although here we focus on
glycolysis alone).

The speed of a reaction (the flux rate) depends on the concentrations of reactants
and products, as well as on the net energy differential between the two. In this case,
this differential is equal to AGgly + (n - |AGaTp) (recalling that AGgy, is negative).
The flux rate through the system is

Fglu =L- [|AGg1y + (n . AGATP)| L (1932)

(19.3.1)

where L is a constant that scales the flux rate to the net energy differential. Note
that Equation 19.3.2 has the same form as the diffusion equation discussed in Chapter
7, where the diffusion rate was equal to the product of a diffusion coefficient and a
local concentration gradient. Here, L is analogous to the diffusion coefficient, and the
term in brackets is analogous to the concentration gradient. The actual value of L can
depend on a number of cellular features, but is irrelevant to the following analysis.

The rate of ATP production is the product of the efficiency of conversion, Equa-
tion 19.3.1, and the glucose flux rate, Equation 19.3.2,

n- AGATP

Farp =1L
ATP AGy,

[AGgly + (n . AGATP)]- (1933)

Here, the absolute signs have been removed, as the negatives cancel out. Note, however,
that the first (efficiency) term increases with n, whereas the second (flux-rate) term
becomes closer to zero with increasing n (because AGygiy is negative). This implies
that there must be some intermediate value of n that maximizes the rate of ATP
production, Farp. This behavior reflects the intrinsic tradeoff between speed and
efficiency.

By taking the first derivative of Equation 19.3.3 with respect to n, setting this
equal to zero (the peak of a nonlinear function), and rearranging, we obtain

* ‘AGgly|

as the ratio of ATP to glucose molecules that should maximize the total rate of ATP
production. Substituting from above for the energy terms yields n* = 2.05, remarkably
close to the actual glycolytic ratio of 2.
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Using Equation 19.3.3, we can further inquire as to the consequences of extracting
different numbers of ATPs in this reaction. For n = 1, 2, 3, and 4, Farp = 37.8L,
51.2L, 40.3L, and 4.9L, respectively. The number of ATPs produced per glucose
molecule, n, can only take on integer values, but given that the adopted value of 2
is very close to the optimum, it follows that the alternatives of n = 1, 3, and 4 are
expected to yield 26, 21, and 90% reductions in flux rates.

Further details on these issues can be found in Heinrich et al. (1997, 1999), with
particularly lucid explanations given in Waddell et al. (1997) and Aledo and del Valle
(2002).

Foundations 19.4. Extension / contraction of a metabolic pathway. Here we
consider a situation in which there are two alternative pathways by which an organ-
ism can acquire an essential molecule S. Under state 1, S is only obtained by direct
environmental uptake, whereas under state 3, S can only be obtained indirectly by
conversion of an upstream precursor P. Both mechanisms of uptake are possible under
state 2 (Figure 19.4). Under this model, evolutionary transitions occur between the
alternative states by gains/losses of particular molecular mechanisms, with the prob-
ability of long-term population occupancy of each site being dictated by its selective
advantage and mutation accessibility.

Following the scheme
Pathway 1 = Pathway 2 = Pathway 3,

the equilibrium probabilities of the reliance on these alternative pathways in a phylo-
genetic lineage depend on the evolutionary transition rates between adjacent states.
Given constant and nonzero transition rates over a long evolutionary time period, a
lineage would be expected to slowly wander from state to state. With sufficient time,
regardless of the starting state, the time-averaged state probabilities would then reach
an equilibrium defined by their relative selective advantages and mutational intercon-
version rates (Foundations 5.2 and 5.3).

Each of the four transition rates (associated with the arrows in the preceding
scheme) is equal to the product of the rate of origin of the appropriate mutation and
the subsequent probability of fixation. For example, transitions from state 1 to 2
depend on: the rate of origin of mutations that allow conversion of P to S, Nv;, where
N is the number of individuals in the population (assumed to be haploid), vy is the
per-individual mutational rate of origin of the upstream pathway, and the probability
of fixation is denoted by ¢(s2—s1), where (s2—s1) is the selective advantage of pathway
2 over that of pathway 1. Extending this approach to all four coefficients leads to

1—2: 012 = Nv1d(s2 — s1) (19.4.1a)
2—1: 021 = Nujp(s1 — s2) (19.4.1Db)
2—3: 923 = NU3¢(83 - 82) (1941C)
3—2: 032 = Nugp(s2 — s3) (19.4.1d)

where u; is the mutational rate of loss of the precursor pathway, and vs and ug denote
the mutational rates of gain and loss of the environmental uptake mechanism. (Here
we assume that state transitions are rare enough that the simultaneous presence of all
three states within a population is negligible, i.e., the sequential model in the parlance
of Chapter 5).

Two mathematical simplifications lead to a relatively straight-forward solution.
First, the equilibrium frequencies of each of the alternative states in a linear array can
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be determined by multiplying the coefficients on all of the arrows pointing toward the
state from above and below. This means that

ﬁl X 921932 (19.4.2&)
ﬁg X 912032 (1942b)
ﬁg X 912923 (19.4.2C)

where ox means “proportional to.” Second, the fixation probabilities are defined by the
standard formula for newly arising mutations (Equation 4.1b), and have the property
that the ratio of these probabilities for advantageous and deleterious mutations with

the same absolute effects is
6(5)/6(—s) = €2er (19.4.3)

for a haploid population with effective size N,. Dividing Equations 19.4.2a-c by 812032,
and applying Equation 19.4.3 leads to

ﬁl =C- 51€2N2(Sl_52) (19.4.4&)
P,=C-1 (19.4.4b)
P3 = C - fge2Ne(s3=52) (19.4.4¢)

where 3; = u;/v;, and C is a normalization constant equal to the reciprocal of the sum
of the three terms to the right of C' in Equations 19.4.4a,c (usage of C insures that
P+ P+ P3 = 1). As 3; defines the ratio of the mutational rates of loss to gain of the
two alternative mechanisms of substrate acquisition, these expressions show that the
probabilities of alternative states are simple functions of the net directional flux into
the end states by mutational and selection processes.
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Figure 19.1. Michaelis-Menten enzyme kinetics as a function of substrate concentration, [S], as
defined in Equation 19.1.4. The maximum rate k., [E] is arbitrarily set to equal 1.0, with k., being
the maximum catalytic rate, [E] the enzyme concentration, and Kg the half-saturation constant

(here also set equal to 1.0). The plot appears hyperbolic on an arithmetic scale and sigmoid on a
logarithmic scale.
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Figure 19.2. Distributions of kinetic features of enzymes surveved across the Tree of Life. Sample

sizes are 3500, 12576, and 4451 for the three parameters, almost all determined in vitro. Median
values are given in the insets. From Davidi et al. (2018).
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Figure 19.3. The canonical pathway of glycolysis, with ten different enzyvmes operating in a
stepwise fashion to produce two pyruvates from a glucose molecule (only one pyruvate is shown).
As noted by the side arrows, a number of the intermediate metabolites are used as entry points to
various biosynthetic pathways. Two ATPs are consumed early in the process, but four are produced
in downstream steps (two for each pyruvate), giving a net yield of two ATPs per glucose molecule
consumed.
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Figure 19.4. Alternative pathway topologies for acquisition of a key metabolite 5. 1) At one
extreme, the sole source of S is environmental (blue). 2) From this perspective, upstream pathway
growth occurs if a mechanism (green arrow) arises that converts another substrate (P) to the focal
metabolite (S). Initially, this results in two (at least partially redundant) pathways to metabolite
S, and the output of the pre-existing pathway descending from P (which may or may not be of
relevance to cellular fitness) will be reduced accordingly. 3) If the environmental-uptake mechanism
for S is then lost, acquisition of S will have become obligatorily dependent on the precursor pathway,
with the linear pathway now having an additional step. In principle, this evolutionary trajectory
can be reversed if a population in the third state acquires a capacity for direct environmental uptake
of S.
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Figure 19.5. A hyperbolic fitness function, with Rg and Rp. respectively, denoting amounts of
resources available directly from the environment and via a precursor molecule, and ry and rg
denoting reductions in fitness relative to the case in which both sources of substrate molecule are
available.
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Figure 19.6. Left) Long-term evolutionary probabilities of the three alternative pathway states
in Figure 19.4, as a function of the relative net forces of mutation and selection from and to the
intermediate (redundant) state 2. The T axis is the ratio of the net pressure towards state 1 relative
to 2; Solid lines denote the situation in which the two extreme states (1 and 2) experience identical
mutation/selection pressures (in this case, the incidences of states 1 and 3 are identical, and given
as the thick cyan line). Dotted and dashed lines respectively denote situations in which the bias
toward the extended-pathway state (3) is 0.3 and 0.1 that toward the external dependent state
(1); with ratios of 3.33 and 10.0, the positions of the state-1 (blue) and state-3 (green) curves would
simply be reversed. All curves follow directly from Equations 19.4.4a-c. Right) The phase diagram
denoting which of the three alternative pathway types will have the highest likelihood of occurrence
is entirely a function of two composite parameters, the ratios of the net rates of loss/gain of the
two end states.
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Figure 19.7. The primary pathways of amino-acid biosynthesis. Not all pathways are present in
all organisms, and in a number of cases variant pathways leading to the same amino acid exist in

different phylogenetic lineages (see main text).

O-Acetylserine

i

| Tryptophan | Tyrosine | [ Phenylalanine

Fructose 1,6-bisphosphate

Glycine I Serine

3-Phosphoglycerate

Phosphoenolpyruvate

4
1

f

Aspartate
4-phosphate

Aspartate
4-semialdehyde

Homoserine  23-Dihydro-
dipicolinate

Homoserine
4-phosphate \&CY steine DAP

Cystathionine
1 bﬁl’yruvatc
Pyruvate a-Ketobutyrate Homocysteine

b ' }
i j
I ' v

e /'
Aspartate | «+—— Oxaloacetate

Anthranilate

Vi

Prephenate

Chorismate

1 Erythrose 4-phosphate
DAHP —Shikimate

Pyruvate ———

Ornithine

Citrulline

Succinate a-Ketoglutarate — 4 | Glutamate

IGlulaminc |

1



48 CHAPTER 19

Figure 19.8. Alternative biosynthetic pathways known to exist in different phylogenetic lineages
for three amino acids.
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