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The vast majority of cellular functions involve the use of one or more proteins.
Although these biomolecules have a myriad of specialized functions, we focus here
on general issues. Proteins are composed of linear strings of amino-acid residues,
parts of which generally assemble into simple secondary structures, such as helices
and sheets, held together by hydrogen bonds. These, in turn, arrange into tertiary
(three-dimensional and frequently globular) architectures. Quaternary structures,
the subject of Chapter 13, arise when separate proteins associate into higher-order
assemblages via binding interfaces. Whereas most genomes encode for several thou-
sand proteins, only a few hundred protein-coding genes are shared across all species
(Harris et al. 2003; Koonin 2003), implying that lineage-specific gains and losses of
genes are common.

Three general topics will be explored in this chapter. First, we will consider
the fundamental biochemical and biophysical properties of the twenty major amino
acids that serve as the building blocks of virtually all proteins. It is highly unlikely
that all twenty amino acids entered the biological world at the same moment of time,
so it is of interest to consider the potential order of entry, as well as the consequences
of a presumably simpler early amino-acid alphabet.

Second, one of the central problems of protein science concerns the stable folding
of proteins into their so-called native states. Levinthal (1968) famously pointed
out that proteins longer than a few dozen residues cannot possibly examine all
feasible configurations en route to final assembly, concluding that specific folding
pathways must be guided by information in the primary amino-acid sequence. Such
pathways must operate on time scales short enough to enable rapid responses to
gene-expression demands, and they must be accurate enough to ensure the proper
assembly of catalytic sites and to avoid the energetic wastage and potentially toxic
effects of improper folding. Poorly folded proteins impose the additional risk of
initiating inappropriate aggregations with self and nonself proteins. Closely related
to the problem of protein folding is the matter of stability once folded.

Third, in light of these features, we will review the known evolutionary con-
straints on the amino-acid sequences found in different proteins, in different regions
of proteins, and in different phylogenetic lineages. Central questions here concern
the degree to which various pairs of amino acids are substitutable for each other, the
extent to which evolution at one particular site is independent of that of others, and
the overall capacity of natural selection to counter the relentless input of amino-acid
altering mutations.
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The Essential Features of Proteins

Proteins are composed of variable amino-acid chain lengths, parts of which typically
fold into more compact localized domains. Average domain sizes are roughly con-
stant across prokaryotes and eukaryotes, but the linkers between domains tend to
average several-fold longer in eukaryotes, leading to ∼ 50% longer total chain lengths
in the latter (an average of ∼ 530 residues in eukaryotes, and ∼ 350 in prokaryotes;
Wang et al. 2011). Given that each amino acid is chemically unique with respect to
molecular weight, charge, hydrophobicity, polarity, etc. (Table 12.1), when further
combined into three-dimensional forms, this combinatorial diversity endows protein
repertoires with an essentially boundless array of structures and functions.

Each amino-acid consists of a central carbon atom attached to one hydrogen
atom, one NH2 amide group, one CO2 carbonyl group, and a unique cognate side
chain (Figure 12.1). Peptide chains are assembled by mRNA-translating ribosomes,
with the amide group of each consecutive amino acid reacting with the carboxyl
group of the adjacent member of the growing chain (Figure 12.2). Glycine has
the simplest side chain, just a single hydrogen atom, and is therefore symmetrical
and quite flexible. Two residues contain sulfur (cysteine and methionine), whereas
several have side chains containing nitrogen, and serine and threonine side chains
uniquely carry an OH group. Proline is exceptional in that the side chain is cova-
lently bonded to the nitrogen atom of the peptide backbone, and as a consequence
is the only amino acid lacking an amide hydrogen atom for use in hydrogen bonding.
Alanine, valine, leucine, and isoleucine have simple side chains ending in CH3, and
like glycine and proline are highly hydrophobic.

Amino-acid composition. To a large extent, the different properties of amino
acids dictate where they are found within proteins and define the biochemical and
structural consequences of mutations. To acquire functionality, proteins need to
achieve proper folds, which are strongly dependent upon backbone hydrogen bonds
between residues (often located distantly on the polypeptide chain). In addition,
hydrophobic residues, which avoid water molecules, tend to be buried within the
cores of proteins. Exposure of hydrogen bonds and hydrophobic residues of protein
cores leads to folding instability and increase stickiness and the potential to engage
in inappropriate protein-protein interactions. Thus, the surfaces of proteins are
typically well wrapped with hydrophilic residues in ways that minimize the intrusion
of water molecules into the core.

As the first protein-based cells emerged some four billion years ago, it is unlikely
that the amino-acid alphabet had reached the current twenty-residue state. This
raises the question as to how much protein diversity might have been achieved in a
setting involving a smaller number of amino acids. The potential seems large, given
that many proteins in today’s world do not contain the full set of twenty amino acids.
An extreme case is an antifreeze protein in a flounder fish that contains only seven
different residues (Sicheri and Yang 1995), and a number of proteins in prokaryotes
are entirely devoid of basic residues (McDonald and Storrie-Lombardi 2010). More-
over, gene-sequence manipulations of modern-day proteins show that, provided the
catalytic site is not compromised, substantial reductions in the number of distinct
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amino acids used in the primary sequence can be achieved without loss of function.
For example, Akanuma et al. (2002) were able to modify a 213-residue protein in-
volved in pyrimidine biosynthesis to function in the absence of seven amino acids,
with 188 positions being occupied by just nine amino acids. A bovine pancreatic
trypsin inhibitor sequence modified to contain > 33% alanine residues retained its
native fold and functions (Islam et al. 2008). In addition, a simplified version of an
archaebacterial chorismate mutase has been engineered to contain just nine amino
acids (MacBeath et al. 1998; Walter et al. 2005). Several other such studies are
reviewed in Longo and Blaber (2012) and Longo et al. (2013).

Although a diverse protein repertoire can be derived from a restricted set of
amino acids, laboratory evolution experiments also suggest that enhanced enzyme ef-
ficiency would have been promoted by expansion of the amino-acid alphabet (Müller
et al. 2013). Moreover, in experiments where the twenty canonical amino acids are
supplemented with noncanonical forms, enzymes can be engineered to have still
higher catalytic rates than found in natural populations (Windle et al. 2017; Zhao
et al. 2020), indicating that even the canonical set of twenty amino acids upon which
all life depends is not necessarily a sufficient resource for natural selection to produce
proteins with optimal features.

Origin of amino acids. Given that the substantial differences among amino-
acid features (e.g., positive vs. negative charge, hydrophilic vs. hydrophobic) define
their potential contributions to various cellular transactions, an understanding of
the temporal order of evolutionary incorporation of the amino acids into the early
proteome might help clarify the origin of cellular features. All of the numerous
attempts devoted to such inference rely on assumptions with tenuous validity, and
the initial functions of some amino acids may have been totally unrelated to their
use in today’s proteins (e.g., charged amino acids might have been deployed to cell
surfaces to improve adhesion to counter-charged surfaces). With this in mind, the
following is a brief survey of the conclusions reached by various approaches.

Davis (1999) postulated that the earliest arriving amino acids would be those
with the simplest production mechanisms, i.e., with the fewest steps in today’s
biosynthetic pathways. Most amino-acid biosynthesis initiates at hubs of central
metabolism – the citric-acid cycle, the pentose phosphate cycle, or the central trunk
that connects the two, allowing the derivation of proximity measures for all twenty
amino acids (Figure 12.3). For example, alanine, aspartic acid, asparagine, glu-
tamic acid, and glutamine are just one to two steps removed from their metabolic-
byproduct precursors, whereas biosynthesis of histidine, lysine, phenylalanine, tryp-
tophan, and tyrosine requires 10 to 13 steps. Under Davis’ hypothesis, the earliest
amino acids were aspartic acid, glutamic acid, asparagine, and glutamine (for a vari-
ety of reasons, viewing alanine as a later addition). These four building blocks are of-
ten referred to as the “nitrogen-fixing” amino acids as the first two are, respectively,
produced by the addition of an amine group to oxaloacetate and α-ketoglutarate
(both components of the citric acid cycle), with secondary amine additions then
leading to asparagine and glutamine.

One caveat with respect to this type of reasoning is that variation exists in the
pathways used in amino-acid biosynthesis by different species (Chapter 19), leaving
the generality of statements about the number of steps required in the production
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of various amino acids uncertain. An additional concern is the observation that a
number of prokaryotes are capable of producing certain amino acids “on demand” by
converting one to another after loading onto a tRNA synthetase (the molecules that
relay their specifically recognized amino acids to cognate tRNAs). The conversion
of glutamic acid to glutamine by addition of an NH3 group is one such example.

An alternative approach to inferring the temporal ordering of amino-acid ap-
pearance relies on phylogenetic analysis. For example, if one is willing to assume
that the amino-acid content of the most strongly conserved protein sequences across
the Tree of Life reflects the availability of amino acids at the times of protein origin,
one is led to conclude that alanine, glycine, aspartic acid, and valine were early ar-
rivals, with cysteine, tryptophan, tyrosine, phenylalanine, glutamine, and glutamic
acid being among the late arrivals (Brooks and Fresco 2002; Brooks et al. 2002). Us-
ing a rather different approach, involving simple pairwise comparisons of sequences
in sister taxa with an outgroup to infer the directionality of amino-acid substitu-
tions, Jordan et al. (2005) suggested a universal trend across the Tree of Life toward
an increase in cysteine, methionine, histidine, serine, and phenylalanine, and a de-
crease in proline, alanine, glycine, and glutamic acid. The underlying assumption
here is that amino acids that are declining in frequency represent the pool of early
arrivals. A clear concern with these approaches is the assumption that there has
been insufficient time in the history of life for the complete erasure of information on
amino-acid compositions at the pre-LECA stage. It is difficult to reconcile this view
with the vast stretch of post-LUCA time and known rates of mutation (Chapter 4).

Despite the uncertainties in our ability to project backwards to the primordial
amino-acid pool, integrating the above sorts of analyses with empirical observa-
tions on the ease of synthesizing amino acids in alternative potential settings for
the origin of life, a loose argument has been made for a limited set of ten prebi-
otic amino acids: alanine, aspartic acid, glutamic acid, glycine, isoleucine, leucine,
proline, serine, threonine, and valine (Higgs and Pudritz 2009; Longo and Blaber
2014). Notably absent from this list are two of the earliest arrivers under Davis’
hypothesis, asparagine and glutamine. If roughly correct, this list of early amino
acids has implications for the temporal ordering of the emergence of cellular bio-
chemistry and the features of early proteins. For example, an absence of the basic,
positively charged amino acids (arginine and lysine) would have limited the potential
for intimate relationships between proteins and acidic nucleic acids (with negatively
charged backbones).

Table 12.1. Properties of the twenty major amino acids. MW denotes the molecular weight
in grams/mol. Hydropathy is recorded as the log of a coefficient that measures the propen-
sity of a molecule to dissociate from water into a nonpolar solvent (Wolfenden et al. 2015).
Interface denotes the log of the ratio of the incidence of use of an amino acid on interfaces to
that on exposed surfaces of proteins; these numbers are taken from E. coli, although similar
results are obtained in other species (Levy et al. 2012). GC is the average fractional G/C
content within codons in the primary genetic code (Figure 12.1). Cost is the biosynthetic
cost of a single amino-acid in units of ATP hydrolyses, which assumes a starting point of
glucose, and includes both the loss of ATP generation due to the diversion of precursors
(with ATP-generating power) and the direct use of ATP in biosynthesis (Chapter 17); the
reported values are the averages computed by Craig and Weber (1998), Akashi and Gojobori
(2002), and Wagner (2005).
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Amino acid Polarity Charge MW Hydropathy Interface GC Cost

Alanine (Ala, A) nonpolar 0 89 2.11 0.01 0.83 13
Arginine (Arg, R) polar + 174 -4.32 -0.09 0.83 22
Asparagine (Asn, N) polar 0 132 -4.88 -0.27 0.17 12
Aspartic acid (Asp, D) polar − 133 -3.29 -0.75 0.50 10
Cysteine (Cys, C) nonpolar 0 121 1.53 1.04 0.50 25
Glutamic acid (Glu, E) polar − 147 -2.26 -0.79 0.50 11
Glutamine (Gln, Q) polar 0 146 -4.07 -0.41 0.50 12
Glycine (Gly, G) nonpolar 0 75 0.20 -0.18 0.83 14
Histidine (His, H) polar + 155 -3.49 0.12 0.50 33
Isoleucine (Ile, I) nonpolar 0 131 4.24 1.11 0.11 30
Leucine (Leu, L) nonpolar 0 131 4.24 0.91 0.38 32
Lysine (Lys, K) polar + 146 -0.27 -1.18 0.17 28
Methionine (Met, M) nonpolar 0 149 1.91 1.01 0.33 30
Phenylalanine (Phe, F) nonpolar 0 165 2.64 1.27 0.17 59
Proline (Pro, P) nonpolar 0 115 3.75 -0.18 0.83 16
Serine (Ser, S) polar 0 105 -2.82 0.14 0.50 14
Threonine (Thr, T) polar 0 119 -1.83 0.10 0.50 15
Tryptophan (Trp, W) nonpolar 0 204 1.83 0.79 0.68 76
Tyrosine (Tyr, Y) polar 0 181 -0.31 0.88 0.17 55
Valine (Val, V) nonpolar 0 117 4.09 0.76 0.50 26

Protein Folding and Stability

To acquire their enzymatic or structural features, individual polypeptide chains gen-
erally must undergo a developmental stage of folding into specific three-dimensional
configurations that confer such functions. The overall architecture of an entire
amino-acid chain is referred to as its tertiary structure, and the most appropriate
functional configuration is referred to as the native state.

In the process of complete folding, numerous substructures are initially formed,
the most common of which are α helices and β sheets. In α helices, the amide group
of every amino-acid donates a hydrogen bond to the backbone carboxyl group of
the amino acid four residues earlier in the polypeptide chain. The total helix-chain
length is typically on the order of 10 to 15 residues (Figure 12.4). Methionine,
alanine, leucine, glutamic acid, and lysine have high helix-forming propensities,
whereas glycine is poor in this regard, and a proline residue will break or kink
a helix because it cannot donate an amide hydrogen bond. In contrast, β sheets
consist of sets of chains (each chain typically 3 to 10 residues long) held together by
backbone hydrogen bonds between pairs of residues in adjacent chains. Such sheets
can consist of parallel or anti-parallel chains, usually four to five, but as many as
ten, with the physical distance between hydrogen-bonding residues in the primary
sequence depending on the length of the strands within the sheet.

Higher-order structures are commonly assembled from α helices and β sheets.
For example, coiled coils result from the interlacing of two or three adjacent α helices,
with appropriate spacing of hydrophobic residues. Helix-loop-helix repeats can yield
a variety of different higher-order geometric forms, depending on the angular features
of the loop. The (βα)8 barrel, one of the most common enzyme folds throughout
the Tree of Life, consists of eight alternating units of β strands and α helices, which
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fold to become an internal curved β sheet surrounded by α helices.
The reliance of almost all proteins on a moderate number of fold types is unlikely

to simply be an evolutionary fossil of common ancestry. Rather, commonly observed
folds appear to be natural outcomes of the fundamental features of peptide chains,
including the intrinsic ability to hydrogen-bond and form hydrophobic associations
with each other. Indeed, random sequences of amino acids (even those involving
reduced sets of amino acids, including homopolymers) commonly generate stably
folded proteins (Doi et al. 2005; Zhang et al. 2006; López de la Osa et al. 2007; Go
et al. 2008; Labean et al. 2011). This suggests that the majority of common folds
in today’s proteins were present even before the establishment of the full genetic
code, and that the compact globular nature of proteins is an expectation based on
physical properties, and hence need not be entirely a product of the guiding hand
of natural selection (Alva et al. 2015).

The rate of protein folding. Given the large number of fold types in the protein
world, the specific folding pathways utilized by different proteins must be extraordi-
narily diverse. Nonetheless, considerable effort has gone towards identifying general
solutions to the “protein-folding” problem that transcend the details of secondary
structure. This is a highly technical field, far from fulfilling its ultimate goals, but
enough quantitative information now exists to yield insight into the typical time
scales and energetic forces involved in productive protein folding. We start by focus-
ing on folding unassisted by outside factors, deferring until Chapter 14 consideration
of the cellular mechanisms that have evolved to assist with the process.

One conceptual solution to the Levinthal paradox invokes the metaphor of a
folding funnel, with an energetically favorable bias in the landscape of possible folds
acting to progressively channel a protein towards the relatively stable native state
(Dill and McCallum 2012; Englander and Mayne 2014, 2017; Wolynes 2015; Neu-
pane et al. 2016). The hallmark of a stable protein is a well-packed hydrophobic
core, nearly universally viewed as being a consequence of the favorable association
of nonpolar surfaces in water, but the actual underlying molecular mechanisms re-
main unclear (Ball 2008; Snyder et al. 2011). Additional factors involved in protein
folding and stability include hydrogen bonds in α helices and β sheets, electrostatic
interactions between residues with different charges, and disulfide bonds between
cysteine residues. Consistent with there being a multifactorial basis, the folding
times of most proteins are quite resilient to sequence changes, with random muta-
genesis (sometimes involving multiple residues) generally causing no more than a
ten-fold increase in the mean folding time, and as many as half of residue changes
causing reduced folding times (Kim et al. 1998; Plaxco et al. 2000).

Under this general model of folding, the approach to the native state can be
viewed as a series of stochastic samplings of alternative states, with the initial estab-
lishment of local fold structures causing a progressive reduction in the multiplicity
of routes to the final native state. Lin and Zewail (2012) go so far as to suggest
that the force resulting from the mere presence of random hydrophobic residues
is generally sufficient to induce a polypeptide chain of < 200 residues to collapse
to a relatively compact form within an appropriate biological time frame. Indeed,
despite the apparent complexity of the process, as a first-order approximation, the
known folding rates of proteins can be explained by knowledge of just the total chain
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length (i.e., the number of amino-acid residues, L). At least in the range of L = 20
to 300, there is a dramatic reduction in the spontaneous folding rate (here, given in
units of sec−1) with increasing L, with the function

kf ' (1.1× 108)e−1.3
√

L (12.1)

explaining ∼ 78% of the variance in the folding rate kf among proteins (Dill et al.
2011). Over an order of magnitude increase in chain length, kf declines approx-
imately seven orders of magnitude from 3 × 104 to 2 × 10−3 sec−1 (Figure 12.5).
Notably, the protein-folding rates that this formula derives from have been almost
universally estimated with in vitro methods. This raises concerns because the macro-
molecular crowding within cells (Dhar et al. 2010) and the attachment of nascent
chains to the ribosome during translation (Kaiser et al. 2011) can modulate folding
by reducing the likelihood of formation of inappropriate folds. Unfortunately, the
technical difficulties of quantifying protein assembly in vivo remains formidable.

A number of attempts have been made to improve the accuracy of prediction
of folding rates by incorporating additional information. For example, Ivankov and
Finkelstein (2004) suggest a refinement that subtracts the subsets of residues in-
corporated into α helices from L. However, the resultant regression yields only
a marginal improvement over the preceding expression with the added expense of
requiring a detailed understanding of the protein’s secondary structure. Incorpora-
tion of further information on secondary structure, amino-acid composition, and/or
the number of chain contacts has little added effect on the accuracy of predic-
tion (Grantcharova et al. 2001; Ivankov and Finkelstein 2004; Prabhu and Bhuyan
2006; Galzitskaya 2008; Huang et al. 2012), and given that kf itself is subject to
measurement error, there may be little room for improvement beyond the pattern
summarized in Equation 12.1.

Finally, it bears emphasizing that although chain length alone is a fairly good
predictor of the folding rate, this need not exclude the importance of other factors,
but simply means that any additional factors must be either tightly correlated with
chain length or of minor significance. In other words, chain length may provide
an overall summary measure with good predictive ability but possibly with little
mechanistic relevance. In addition, not too much should be read into the significance
of the L0.5 scaling in Equation 12.1, as exponents in the range of 0.1 to 0.7 yield fits
that are nearly equally as good.

How many contortions might a protein go through en route to achieving a proper
fold? Because the mean time for a chain to switch from one configuration to another
is estimated to be ' 10−9 sec (Zana 1975), taking the reciprocal of Equation 12.1 as
the approximate mean time to complete a search, ' 10−8e

√
L, the average number

of configurations sampled prior to finding the proper fold solution is ' 10e
√

L. For
L = 200, this implies an average of 13 × 106 configurations searched in a time span
of ∼ 0.013 sec. For L = 300, this jumps to ∼ 33 × 107 configurations searched
over 0.33 sec, and with L = 500 to ∼ 51 × 109 searches over 51 sec. This implies
that beyond chain lengths of 200 to 300 residues, unassisted folding times rapidly
approach biologically unrealistic levels, a point to which we will return to in Chapter
14. Thus, it may not be a coincidence that protein domains exceeding 300 residues
in length are uncommon (Wheelan et al. 2000; Wang et al. 2011; Lin and Zewall
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2012), and that average lengths of entire proteins are commonly on the order of 300
residues in most species.

To what extent do observed folding rates approach the maximum rates possi-
ble from the standpoint of biophysical limitations? Following the suggestion that
an upper bound to the rate of folding of a single-domain protein ' (108/L) sec−1

(Kubelka et al. 2004), by comparison with Equation 12.1, it can be seen that empiri-
cally observed folding rates are typically far below the maximum. For example, for a
100-residue protein, the maximum folding rate is predicted to be ' 106/sec, whereas
Equation 12.1 implies an average observed rate of only 249/sec. Because even the
most rapidly folding proteins currently known do so one to two orders of magnitude
more slowly than this proposed protein-folding speed limit (Kubelka et al. 2004),
it appears that natural selection has generally been unable to achieve perfection in
folding rates.

Does the level of refinement of folding rates vary among species? Although an
ideal comparison of orthologous proteins in different phylogenetic lineages has not
been performed, it has been argued that proteins of equivalent length fold at least ten
times more rapidly in bacteria than in eukaryotes (Galzitskaya et al. 2011). Proteins
also tend to be longer in eukaryotes than prokaryotes, which will further exacerbate
the protein-folding challenges in the former group. In one of the only comparative
studies of protein-folding pathways, Lim et al. (2018; Lim and Marqusee 2018) found
for the protein ribonuclease H that although different bacterial lineages use the same
type of folding intermediate, the pathways to get there differ; and another study
of a protease revealed dramatic differences in the folding mechanism (Nixon et al.
2021). Thus, even within bacteria, there are apparently evolutionary paths open to
divergence of folding mechanisms without compromising folding rate.

Stability of folding. As with protein folding rates, folding stability (the tendency
to remain folded after achieving the native state) can be estimated to a fairly high
degree of accuracy from information on the total chain length alone, with additional
information on sequence and secondary structure again not greatly improving pre-
dictability (Robertson and Murphy 1997; Ghosh and Dill 2009; Khan and Vihinen
2010; Dill et al. 2011; Jarzab et al. 2020). The mechanisms by which stability is
achieved are diverse, and include packing effects of hydrophobic residues, backbone
hydrogen bonds, and favorable electrostatic interactions (Miller et al. 2010). Thus,
not surprisingly, protein folding rates and stability are not independent attributes
– proteins that fold rapidly are often also quite stable (Plaxco et al. 2000; Sato et
al. 2001). However, conflicts can also exist between high stability and rapid folding,
for whereas proteins are positively selected to fold into their proper native states,
negative selection may operate to avoid folding too rapidly and/or too stably into
misfolded states. Random mutagenesis with a model protein demonstrated that
although a substantial fraction of mutations result in faster folding times, nearly all
of these have the side effect of reducing stability, suggesting that natural selection
places a premium on the latter (Kim et al. 1998).

Indirect evidence supports the idea that selection on folding stability plays a
central role in amino-acid sequence evolution. For example, there is a strong cor-
relation between the thermostability of individual proteins and the optimal growth
temperature of bacterial species (Dehouck et al. 2008; Jarzab et al. 2020), and the
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total usage of seven amino acids – four hydrophobic (Ile, Val, Trp, and Leu), one
polar (Tyr), and two charged (Arg and Glu) – is highly correlated with optimal
growth temperature (Zeldovich et al. 2007). The joint usage of this particular mix
of residues has been proposed to represent a compromise between the conflicting
challenges of folding rapidly and avoiding stable misfolded configurations (Bere-
zovsky et al. 2007). Under this hypothesis, the reduced incidence of these seven
residues at lower temperatures is viewed as a by-product of the relaxed intensity of
selection on folding mechanisms in less extreme thermal backgrounds.

Protein stability is deemed to be positively associated with fitness in the sense
that destabilized proteins are prone to loss of function, aggregation, and/or direct
toxicity. Nonetheless, most proteins sit on the “margin of stability” in the sense
that only one or two mutations are often sufficient to induce complete loss of stabil-
ity. Although it is commonly argued that marginal stability is required for proper
protein function, with excess stability somehow reducing protein performance, this
has not held up to close scrutiny. It is relatively easy to create more stable pro-
teins by mutagenesis (Matsuura et al. 1999; Bershtein et al. 2013; Sullivan et al.
2012), and the individual residues contributing to stability typically interact in an
additive fashion (Wells 1990; Serrano et al. 1993; Zhang et al. 1995). Moreover,
numerous proteins have been engineered to have increased stability with few, if any,
consequences for enzyme efficiency (e.g., Giver et al. 1998; van den Berg et al. 1998;
Taverna and Goldstein 2002; Borgo and Havranek 2012; Moon et al. 2014).

An alternative explanation of all of these observations is that marginal stability
evolves as a simple consequence of the diminishing benefits of increased stability.
This would be the case, for example, if fitness is a hyperbolic function of the energy
associated with the forces holding a protein together (Govindarajan and Goldstein
1997; Taverna and Goldstein 2002; Bloom et al. 2005; Wylie and Shakhnovich 2011;
Serohijos and Shakhnovich 2014). Under this model, proteins are expected to be
pushed by natural selection to more stable configurations until reaching the point
where any further fitness improvement is small enough to be offset by the vagaries of
random genetic drift and/or mutation pressure towards less stable states (Chapter
5). In essence, under any particular population genetic-environment, a quasi-steady-
state distribution of stability is expected to evolve to the point at which the rates of
fixation of beneficial and deleterious mutations are equal (Figure 12.6). The overall
prediction is that the mean folding stability of proteins will evolve to higher values
in populations with larger effective population sizes. This same hypothesis may
explain the higher folding rates in prokaryotes than in eukaryotes noted above.

A more mechanistic view of folding stability issues can be acquired by consider-
ing the typical features of evolved proteins. The folding stability of proteins is often
on the order of ∆G = −3 to −20 kcal/mol (Plaxco et al. 2000; Dill et al. 2011). With
the expected fraction of folded proteins being ' e−∆G/RT /(1 + e−∆G/RT ) at thermo-
dynamic equilibrium, where RT ' 0.6 kcal/mol, a protein with ∆G = −3 is expected
to be folded > 99% of the time. A survey of experimental assays of mutational ef-
fects suggests an average ∆∆G ' 0.6 kcal/mol (SD = 1.1) associated with individual
surface residues, and higher destabilizing effects (1.4 kcal/mol; SD = 1.7) for core
residues. The distributions of both kinds of effects are roughly normal (Figure 12.7),
so the overall distribution of site-specific effects for an entire protein is essentially
a mixture of normals. Because smaller proteins have a higher fraction of surface
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residues, the average ∆∆G is expected to be smaller. To put this in perspective, the
average energy associated with single hydrogen bonds in peptides is thought to be
on the order of ∆G = −2 kcal/mol (Sheu et al. 2003; Wendler et al. 2010).

If the drift-barrier hypothesis does indeed provide an explanation for the evolu-
tion of marginal stability, the distribution of ∆∆G values seen in such surveys must
reflect the natural outcome of the joint forces of mutation, selection, and drift in
positioning a population on the fitness-stability function (Wylie and Shakhnovich
2011). Unfortunately, as in most areas of cell biology, there are few comparative
studies bearing on this issue. However, an in vitro evaluation of the folding sta-
bility of the dihydrofolate reductase enzyme from 36 species of mesophilic bacteria
illustrates the existence of a substantial range of variation among species, with the
standard deviation being roughly 10% of the mean (Figure 12.8).

Determinants of Protein-sequence Evolution

Within a given protein, there can be substantial variation in the rates of substitution
among amino-acid sites. Not surprisingly, positions involved in catalytic sites are
generally under strong purifying selection, and as a consequence, proteins often
retain the ability to function appropriately in foreign cellular backgrounds after very
long periods of evolutionary divergence. For example, a survey of the performance
of over 400 different human proteins in yeast (lineages that separated over a billion
years ago) revealed that nearly half were able to complement the absence of the
native yeast gene (Kachroo et al. 2015). Remarkably, however, although between 60
and 90% of genes involved in various aspects of metabolism were able to complement.
∼ 50% of genes involved in transcription, ∼ 65% involved in DNA replication and
repair, and nearly all involved in cell growth and death were unable to complement.
Thus, proteins whose functions are most closely related to fitness need not remain
highly conserved at the protein-sequence level. Here, we explore a wide range of
issues bearing on the mechanisms responsible for the substantial evolutionary-rate
variation that exists among proteins and among sites within them.

Lessons from phylogenetic comparisons and experimental mutagenesis.
Comparisons of the sequences of orthologous protein-coding genes over a vast array
of species have left little doubt that amino-acid sequences undergo slow but relentless
change over evolutionary time. Not all amino-acid substitutions are acceptable in
all contexts, and there is substantial variation in evolutionary rates among different
proteins and different phylogenetic lineages, but only a tiny fraction of amino-acid
sites are invariant across the Tree of Life.

The most common approach to estimating protein evolutionary rates starts at
the level of DNA-sequence analysis, and compares the rates of nucleotide substi-
tution at amino-acid replacement and silent sites where, respectively, nucleotide
substitutions do or do not elicit a change at the amino-acid level. Owing to the
nature of the genetic code, ∼ 25% of nucleotide sites in a protein-coding gene are
typically silent. For example, third-positions in codons for the eight amino acids for
which A, C, G, or T lead to the same residue are (Figure 12.1) referred to as four-fold
redundant sites. The usual assumption is that such sites evolve in a neutral fashion,
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owing to their invisibility at the amino-acid level. If this is the case, then the rate of
nucleotide substitution (meaning the rate at which one nucleotide type is displaced
by another at the population level) at silent sites is expected to equal the mutation
rate per site per generation (u) in accordance with the neutral theory (Chapter 4).
The total expected silent-site divergence between two lineages separated by t time
units (in this case, generations) would then be 2tu mutational changes per site, the
2 appearing because mutations accumulate independently down each lineage.

Having such a benchmark of neutral divergence is informative, as it provides
a means for interpreting rates of amino-acid substitution, in particular factoring
out the contribution of mutation pressure from that associated with selection. If
substitutions at replacement sites are selected against, which is generally the case
(Kimura 1983; Nei and Kumar 2000; Yang 2014), their rate of divergence should
be lower than the expected neutral benchmark. Letting φf be the probability of
fixation of a newly arisen replacement mutation, the rate of divergence at such sites
has expectation 2t·(2Nu)·φf , where N is the absolute population size, and 2Nu is the
rate at which mutations arise within each population (assumed to be diploid) per
nucleotide site. If mutations at replacement sites are neutral, the fixation probability
is simply the initial frequency of a mutation, 1/(2N), and the overall amount of
divergence is equal to the neutral expectation given above, 2tu.

Generally, we do not have an accurate measurement of the divergence time t

between two species, nor of the mutation rate u. However, if one simply takes the
ratio of the observed divergences at replacement and silent sites (denoted dN and
dS, respectively, with the N referring to nonsynonymous or amino-acid replacement
sites), the resultant ratio has expectation [2t · (2Nu) · φf ]/(2tu) = 2N · φf , assuming
silent sites do indeed evolve in a neutral fashion. When rewritten as φf/[1/(2N)],
this ratio is seen to be equivalent to the fixation probability at replacement sites
relative to the neutral expectation. Thus, under appropriate conditions, dN/dS

provides a biologically interpretable measure of the degree of selective constraint on
a protein-coding gene – assuming that the majority of mutations are either neutral
or deleterious, dN/dS is equivalent to the fraction of amino-acid altering mutations
that evade the eyes of natural selection, and for that reason is sometimes referred
to as the width of the selective sieve.

There are many caveats with respect to this sort of analysis. First, it is assumed
that silent sites are neutral, whereas we know that these can experience some se-
lection at various levels from, for example, preferential tRNA recognition of certain
nucleotides in third positions, mRNA structural constraints, and influence of trans-
lation speed on folding efficiency (Sharp et al. 2005; Zhou et al. 2010; Lawrie et
al. 2013; Long et al. 2018; Walsh et al. 2020). Second, dN is generally measured
as an average over multiple sites within a gene, obscuring the fact that although
many substitutions can be strongly selected against, a minority may nonetheless
be advanced by positive selection. Third, there is the difficult matter of accurately
estimating dN and dS from highly divergent sequences, as multiple substitutions at
individual sites will lead to an undercounting of the actual numbers of changes that
have accrued, especially at more rapidly evolving silent sites.

These and many other matters have been taken up in detail in the technical
field of DNA-sequence analysis, but justified or not, the dN/dS ratio remains a
central parameter determined in almost all molecular-evolution studies. With few
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exceptions, proteome-wide studies of dN/dS in comparisons of closely to moderately
related species, yield average ratios on the order of 0.05 to 0.25 (Kuo et al. 2009;
Lynch et al. 2017). This implies that on average 5 to 25% of amino-acid alterations
of proteins are typically acceptable in nature. There is, however, a wide range of
variation among proteins and among species. Given the possibility of selection on
silent sites, such differences need to be cautiously interpreted as implying lineage-
specific differences in the efficiency of natural selection. Moreover, dN/dS analyses
leave unresolved the degree to which neutral vs. beneficial mutations contribute to
the pool of fixed amino-acid replacement substitutions.

Comparative analyses have led to a number of other general observations that
leave little doubt that the majority of amino-acid altering mutations are removed
by purifying selection in nature: 1) most amino-acid substitutions involve exchanges
of amino acids with similar chemical properties, with radical exchanges being more
common in low-Ne species (Bergman and Eyre-Walker 2019; Weber and Whelan
2019); 2) substitution rates are higher for residues on protein surfaces than for
those in hydrophobic cores ((Suckow et al. 1996; Goldman et al. 1998; Bustamente
et al. 2000; Ramsey et al. 2011; Moutinho et al. 2013; Roscoe et al. 2013; Firnberg
et al. 2014; Sarkisyan et al. 2016); and 3) there is a premium on the use of amino
acids with relatively low biosynthetic costs, conditional on maintaining a level of
residue diversity necessary for maintaining stable and functional proteins (Krick et
al. 2014; Venev and Zeldovich 2017).

An alternative method to understanding the degree of constraint on protein se-
quences is to directly evaluate the performance of randomly mutagenized sequences.
However, although such an approach has the advantage of avoiding problems of
sequence saturation, silent-site selection, etc., it has the strong limitation of only
being able to identify residue changes with major effects. The central issue here is
that selection in nature is capable of eradicating deleterious mutations with selective
disadvantages down to order 1/Ne, where Ne (the effective population size) is typi-
cally in the range of 104 to 109 (Chapter 7), whereas lab experiments are generally
unable to detect deleterious mutations with fitness effects smaller than 10−3. Thus,
random mutagenesis experiments certainly underestimate the fraction of amino-acid
substitutions that are eliminated by purifying selection in nature.

This being said, such experiments have been illuminating in a number of ways.
Yampolsky and Stoltzfus (2005) summarized the relative exchangeabilities of amino-
acid pairs observed in such studies. Hydrophobic residues tend to be most substi-
tutable with other hydrophobic residues, and hydrophilic residues with each other,
whereas exchanges between these two extreme groups tend to be unacceptable.

The protein most extensively studied in this way is β-lactamase, a bacterial
protein that hydrolyzes antibiotics such as penicillin. The functional consequences
of every possible amino-acid substitution at every position in the protein has been
characterized (Deng et al. 2012; Jacquier et al. 2013; Firnberg et al. 2014). In
agreement with evolutionary divergence data, this work reveals that the number of
acceptable amino acids at individual sites is frequently below 15 (and often much
lower), with surface residues being generally being more receptive to change (Figure
12.9). However, a number of surface positions far from the active site are highly
sensitive to mutations, ruling out the generality that all surface residues are under
relatively relaxed selection. Several residues can be altered in ways that increase
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molecular stability, and the overall distribution of effects is bimodal, with most
acceptable variants having functionality just slightly below the norm and a small
fraction being nonfunctional (Figure 12.10).

Surprisingly, a number of sites that are known to vary among β-lactamase se-
quences from natural isolates are intolerant to amino-acid substitutions, an observa-
tion that has been seen in other proteins (Mishra et al. 2016). This raises questions
about the common assumption that sites with high natural levels of variability
experience low functional constraints. It also suggests the importance of context
dependence, with certain sites being more or less accepting of alterations depending
on the state of other sites within the protein (Bershtein et al. 2006; Salverda et
al. 2011), a point to which we will return to below. A strong role for contingency
is derived from the observation that when mutations at two sites that are accept-
ably exchangeable on their own are combined in this protein, they commonly lead
to nonfunctional molecules (Axe 2000). Moreover, chimeric molecules obtained by
splicing together halves of different natural variants are completely nonfunctional
(Axe 2000).

Assays from numerous random mutagenesis experiments with other proteins are
in general agreement with the preceding results. For example, Guo et al. (2004) ex-
amined the performance of ∼ 105 single amino-acid substitutions in 3-methyladenine
DNA glycosylase, a DNA repair enzyme in humans, and found that 34% of exchanges
led to enzyme inactivation; substitutions in α-helices were about twice as exchange-
able as those in β-strands (as seen in other studies; Silverman et al. 2001; Firnberg et
al. 2014), and those in turns and loops were still more acceptable. Similar analyses
with different proteins have yielded estimates of 30 to 80% for fractions of nonfunc-
tional mutations (Guo et al. 2004; Axe et al. 1996; Materon and Palzkill 2001).
Again, although the definition of nonfunctional varies among studies (with most
incapacitated enzymes retaining at least a small amount of functionality), owing
to measurement limitations, all such studies must greatly underestimate the total
fraction of mutations that would be removed by purifying selection in nature.

From an evolutionary standpoint, it is more desirable to know the net conse-
quences of mutations not simply for molecular function but for organismal fitness,
and to have such measurements on a continuous scale rather than a yes/no scale
with an arbitrary cutoff. Although the data are more limited here, they generally
point in the same direction. In the case of β-lactamase, the distribution of fitness ef-
fects for single amino-acid substitutions has a mode near zero, with a small fraction
being favorable and a long tail to the left (denoting deleterious effects), ∼ 40% hav-
ing selection coefficients 0 < s < 0.1, and only ∼ 6% completely obliterating enzyme
function (Figure 12.10).

Direct fitness assays of random mutations in other genes are generally consis-
tent with the observations for β-lactamase (Figure 12.10; see also Roscoe et al. 2013;
Sarkisyan et al. 2016; Lundin et al. 2018). Typically, the main peak in the distribu-
tion of fitness effects is near zero, with only a small fraction of mutations improving
fitness, the majority of mutations reducing fitness by no more than 10%, and on
average just 1%, and with a secondary peak associated with mutations lacking en-
tirely in activity. Notably, in a number of cases, a few silent-site substitutions have
discernible negative effects, implying effects on transcription, translation, and/or
folding efficiency. Ribosomal protein genes are particularly pronounced in this re-
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gard, having similar distributions of fitness effects for both silent and replacement
substitutions (Figure 12.10).

Expression level and the propensity for sequence change. It has long been
thought that the evolutionary rate of a protein is inversely related to its func-
tional significance – the higher the relevance to fitness, the lower the acceptability
of amino-acid changes. However, there is no formal way to rank functional signifi-
cance, and simply invoking low dN/dS introduces a circularity. To avoid falling into
this seductive trap, an exploration of alternative explanations is warranted.

As noted above, residues buried within a protein generally evolve at substan-
tially lower rates than those exposed on protein surfaces. Buried polar residues
involved in hydrogen bonding are especially conserved, although the constraint on
molecular evolution declines with increasingly large internal cores of proteins, pre-
sumably because stability is distributed across more residues (Franzosa and Xia
2009; Worth and Blundell 2009, 2010). Proteins with especially low rates of sub-
stitution for surface residues have even more exceptionally low rates for the core
residues, leading to the suggestion that alterations in surface residues facilitate the
acceptance of mutations in the core (Toth-Petrósky and Tawfik 2011). However,
it remains unclear whether this is a causal relationship or simply a consequence of
some proteins being under greater overall constraint at all positions.

Although a plausible argument for reduced rates of evolution in core positions
is the intimate involvement of backbone hydrogen bonds and hydrophobic effects
in the maintenance of folding stability, the actual mechanisms may be more com-
plicated, as other features are correlated with interior vs. exterior residues. For
example, the tendency to engage in unproductive aggregations with other proteins
is a function of surface residues, and amino-acid substitutions in such regions might
sometimes even be driven by positive selection to avoid aggregation (Wright et al.
2005). Moreover, the relative packing density of residues is strongly correlated with
solvent accessibility, and when these two are jointly accounted for in a multiple re-
gression, the former accounts for more of the variance in evolutionary rate than the
latter (Toft and Fares 2010; Yeh et al. 2014).

These observations on the consequences of mutations for protein stability and
adhesivity help explain a general observation on relative rates of protein evolution.
As noted above, it was long thought that such variation in evolutionary rates would
be dictated by the functional significance of a protein, but as single-gene knockout
studies raised questions about this interpretation, it became clear that the best
evolutionary-rate predictor is the expression level of a protein (Pal et al. 2001;
Zhang and Yang 2015).

One interpretation of this pattern invokes the idea that natural selection oper-
ates to minimize the likelihood of improper folding and of instability once properly
folded (Serohijos et al. 2012). Misfolded proteins might commonly arise as a conse-
quence of erroneous protein sequences resulting from transcriptional or translational
errors (Drummond and Wilke 2008; Yang et al. 2010). That the latter is a significant
challenge is made plausible by the fact that proteins with low amino-acid substitu-
tion rates also have low substitution rates at silent sites, which might reflect selection
to avoid amino-acid misloading by noncognate transfer RNAs at nonoptimal codons
(Chapter 20). The fact that most mutations influencing protein performance do so
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by eliciting changes in protein folding and stability rather than by directly compro-
mising the catalytic core provides further motivation for the misfolding hypothesis
(Bloom et al. 2007; Shi et al. 2012). Under this hypothesis, the consequences of
misfolding are proposed to be more significant in an abundant protein simply be-
cause the absolute number of problematical molecules is greater, although this would
only follow if the number rather than the fraction of such proteins is of over-riding
importance.

There are, however, alternative (and not necessarily mutually exclusive) expla-
nations for low rates of evolution in highly expressed protein-coding genes. For
example, the misinteraction hypothesis postulates purifying selection for surface
residues that avoid promiscuous interactions / aggregations with inappropriate pro-
teins (Levy et al. 2012; Yang et al. 2012). With a focus on surface residues, this
explanation differs from the emphasis of the misfolding hypothesis on the importance
of residues in protein cores to folding and stability.

That inappropriate protein-protein interactions are a nontrivial selective chal-
lenge is highlighted by the fact that ∼ 20% of protein molecules are typically bound
with nonspecific partners in yeast and metazoan cells (Zhang et al. 2008). Under
the misinteraction hypothesis, the efficiency of selection against amino-acid sub-
stitutions in surface residues is expected to be especially elevated in more highly
expressed proteins. Thus, it is of interest that in E. coli, the more abundant pro-
teins have a lower tendency to aggregate (de Groot and Ventura 2010), apparently
because of their reduced surface hydrophobicity (Ishihama et al. 2008). The same
is true for human proteins (Tartaglia et al. 2007).

To investigate this idea further, Levy et al. (2012) ordered the full set of amino
acids with respect to their tendency to adhere to other molecules, using information
on their degree of participation in natural interfaces. They found a negative corre-
lation between a protein’s cellular abundance and the predicted adhesiveness of its
surface. This effect diminishes from E. coli to yeast to human, again consistent with
an expected reduction in the efficiency of selection against mildly deleterious mu-
tations in species with reduced effective population sizes. Notably, in bacteria, the
disparity in evolutionary rates between highly and lowly expressed genes is greatest
in species with rapid cell-division rates (Vieira-Silva et al. 2011), which might reflect
the latter species having larger effective population sizes and hence a higher level of
efficiency of natural selection.

Mutation pressure and biased amino-acid usage. The particular amino acids
deployed within a protein need not simply be outcomes of selection. As discussed
in Chapter 5, the likelihood of occupancy of a particular residue at any position
within a protein is a joint function of the mutation biases towards and away from
individual allelic variants and the ratio of the power of selection to drift. Thus, to
understand the relative roles of these two determinants, it is necessary to consider
why genome-wide G+C nucleotide compositions range from ∼ 0.25 to ∼ 0.80 among
different species (Lynch 2007), and whether such biases have cascading effects on
encoded amino-acid composition.

If genomic G+C composition reflects the prevailing pressure of mutation, it
ought to be correlated with the expectations based on known mutational spectra,
as recorded in mutation-accumulation experiments (Long et al. 2018). Letting u be
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the mutation pressure of A+T nucleotides to C+G, and v be the reciprocal rate, the
expected equilibrium frequency of G+C under mutation pressure alone is simply
u/(u + v). Across the Tree of Life, average genome-wide G+C compositions are
indeed strongly correlated with this neutral expectation (Figure 12.11). Nonetheless,
despite positive correlation, almost all genomes also have an excess G+C content
relative to the neutral expectation. Notably, the deviations of G+C composition
from the neutral expectations are particularly large at silent sites, supporting the
idea that contrary to popular belief (noted above), such sites do not generally evolve
in a neutral fashion. The general interpretation of these results is that whereas there
is biased mutation pressure towards A+T content in most species, as indicated by
most neutral G+C expectations being < 0.5, there is near universal selection for
G+C.

For the organisms in Figure 12.11, the ratio of mutation rates from G+C→ A+T
to the reverse ranges from 16 (very low G/C-content genomes) to 0.4 (moderately
high G/C-content genomes). As most biologists assume all variation to be a product
of selection, it is often suggested that nucleotide-composition bias is a product of
lineage-specific selection pressures, e.g., to generate base compositions conducive
to producing the amino-acid compositions of proteins most compatible with the
challenges of specific environments (Mendez et al. 2010). However, there is no
direct evidence that mutation spectra are driven by selection, and the possibility
that the substantial level of divergence may have been governed largely by effectively
neutral processes cannot be ruled out (Haywood-Farmer and Otto 2003). As noted
in Chapter 4, explaining phylogenetic variation in the mutation rate itself with
optimization arguments has not been easy, and explanations for a fine-tuning of the
molecular spectrum are even more challenging. Selection operates on the genome-
wide deleterious mutation rate, driving this down to some level beyond which further
advantages are offset by the power of random genetic drift, but conditional on the
maintenance of a constant genome-wide mutation rate, the mutational spectrum
may be free to wander over evolutionary time.

Why is there near-universal selection for G+C composition, regardless of the
magnitude of mutation pressure towards A+T? The bioenergetic costs of all four
nucleotides are essentially the same (Chapter 17), so this does not appear to be in-
volved. It has been argued that high-temperature environments impose selection for
higher G+C composition because G:C pairs involve three hydrogen bonds (as op-
posed to two for A:T), rendering a higher degree of DNA (and RNA) stability (Musto
et al. 2004; Basak and Ghosh 2005). However, although there are correlations be-
tween G+C content and optimal growth temperatures within narrow phylogenetic
groups of bacteria, this is not true on a broader phylogenetic scale. Moreover,
the G+C composition of silent sites does not exhibit such correlations, contrsary
to expectations if there is genome-wide selection for duplex stability (Hurst and
Merchant 2001). Adenine and guanosine (purine) nucleotides contain three more
nitrogen atoms than do pyrimidines, so long-term residence in nitrogen limiting en-
vironments might select for genomes enriched with Cs and Ts (Rocha and Danchin
2002; Luo et al. 2015), but as DNA consists of A:T and G:C bonds, such selection
would have to occur at the RNA level and be efficient enough to discriminate a
difference of two nitrogen atoms against a total-cell backdrop of billions of these.
Finally, gene conversion (a result from the repair of heteroduplex DNA arising from
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recombination between two nonidentical sequences) is thought to be weakly biased
towards Cs and Gs (when mismatches with As and Ts arise) across the Tree of Life
(Lassalle et al. 2015), providing still another pressure on nucleotide composition,
depending on the level of recombination.

Regardless of the mechanisms driving genome-wide nucleotide composition, we
wish to know whether such biases have repercussions at the level of amino-acid com-
position across phylogenetic lineages. Owing to the structure of the genetic code,
the codons for some amino acids are much richer in GC content than others (Figure
12.1); e.g., 83% for alanine, arginine, glycine, and proline, but ≤ 17% for asparagine,
isoleucine, lysine, phenylananine, and tyrosine. Moreover, the biochemical features
of amino acids are not independent of the GC composition of their codons – amino
acids encoded by GC-rich codons tend to be less hydrophobic but also less ener-
getically expensive to synthesize (Table 12.1). Thus, a central question is whether
certain population-genetic environments promote the use of particular amino acids
independent of their immediate functional significance.

From Figure 12.11, this can be seen to be the case – species with very strong
mutation pressure towards A+T also gravitate to codons with low G+C composi-
tion. Among species, genome-wide G+C-content at first and second positions of
codons (which mostly consist of amino-acid replacement sites) is correlated with
that at third positions (which are largely silent sites) (Gu et al. 1998; D’Onofrio et
al. 1999; Bastolla et al. 2004; Chen et al. 2004). Although the range of the former is
only about a third of the latter, the proteome-wide usage of amino acids with GC-
rich codons in different species more than doubles across the range of genome-wide
GC composition at silent sites, whereas that of the AT-rich group declines by more
than 50% (Knight et al. 2001; Li et al. 2015). Thus, mutation pressure is apparently
sufficient in many cases to overcome the weak selection for amino-acid usage in a
substantial fraction of sites within proteins.

These observations are of relevance to the question as to whether isolated lin-
eages are likely to evolve completely independently at the molecular level. When two
separate lineages independently acquire the same novel phenotype from the same
starting state, the change is said to be parallel, whereas independent acquisition
of the same state from different initial conditions represents convergent evolution
(Zhang and Kumar 1997; Storz 2016). Evolutionary substitutions to certain types
of amino acids at particular sites within proteins occur more frequently than ex-
pected by chance (e.g., Bazykin et al. 2007; Rokas and Carroll 2008), and there
is little question that lineages do occasionally respond to the same selective chal-
lenge in parallel manners. A dramatic example was revealed in replicated E. coli
populations exposed to an increasing gradient of the antibiotic trimethoprim, which
exhibited a similar temporal ordering of similar mutations conferring resistance in
the dihydrofolate reductase gene (Toprak et al. 2012). However, demonstrating that
convergent/parallel evolution is an outcome of shared selective pressures is difficult
without rigorous statistical and/or empirical analysis, and numerous examples exist
in which parallel evolution has inspired arguments about the channeling of molecular
adaptations, only to be overturned by subsequent evaluation (Storz 2016).

This being said, it has been consistently observed that, relative to the neutral
expectation, the incidence of amino-acid convergence events becomes progressively
less common with more distantly related lineages (Goldstein et al. 2015; Shah et
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al. 2015; Zou and Zhang 2015). A compelling explanation for such behavior follows
from the point noted above – as a protein accepts amino-acid changes at a variety
of sites in different lineages, this alters the selective environment at other sites,
thereby diminishing the likelihood of effectively neutral mutations being channeled
to the same set of residues. Such a model implies a predominance of both effectively
neutral substitutions (allowing change to occur at individual sites) and of epistasis
(interaction effects between individual sites).

Epistasis and compensatory mutation. The preceding sections provided num-
ber of examples in which the effects of mutations in protein-coding sequences are
very frequently epistatic with respect to fitness. That is, the fitness effects of indi-
vidual mutations often depend on local context. Direct evidence for such interac-
tions derives from experimental mutagenesis experiments, such as that of Bank et al.
(2015), who in an analysis of > 1000 double mutants in the binding domain of a yeast
heat-shock protein found a preponderance of pairs with negative combined effects
on fitness (beyond the additive expectations based on single-mutational effects). In
this study, very few pairs exhibited positive epistatic effects.

In a somewhat different study, Lunzer et al. (2010) substituted (one at a time)
168 amino acids in the isopropymalate dehydrogenase protein in E. coli to match the
differences in the orthologous protein in Pseudomonas aeruginosa. On the E. coli
background, 63 of these single substitutions were functionally compromised, whereas
only one had improved performance. In another comparative study, Starr et al.
(2018) reconstructed estimated ancestral states in a yeast heat shock protein (Hsp70)
and then laboriously substituted amino acids from the modern-day sequence into
the ancestral form, and vice versa. Although Hsp70 has retained a highly conserved
function over a billion years of evolution, > 75% of these single-residue exchanges
were deleterious, even though they must have been acceptable over the course of
evolution. All of these observations are consistent with stochastic lineage-specific
additions of mutations conditional upon earlier changes progressively altering the
permissive environment for substitution.

Further indirect evidence for the long-term evolutionary significance of epistasis
derives from a number of different comparative analyses. For example, in a study
of 16 eukaryotic proteins, each with > 1000 sequences available from a wide variety
of phylogenetic lineages, Breen et al. (2012) found that the average amino-acid site
is occupied by just 8 different amino-acids, whereas ample evolutionary time has
elapsed for all mutation types to have appeared at each site. The authors reasoned
that dN/dS ought to be (8−1)/19 = 0.36 if amino-acid altering mutations accumulate
in a noninteractive way, i.e., 74% of amino-acid replacements would be expected to be
unacceptable. However, the average observed dN/dS ratio (measured from sequence
divergence between species) for these proteins averages about 7× lower than this
expectation, leading to the conclusion that negative epistatic fitness effects must be
pervasive among mutations – if a particular amino-acid fixes at one particular site, it
apparently creates a local environment that prevents the fixation of the majority of
amino-acid altering mutations at other sites, leaving an average of only (1/7)×7 = 1
permissible change per site at any point in evolutionary time.

A second compelling line of evidence for the role of epistasis in protein evolu-
tion derives from the observation that many amino-acid changes that cause human
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pathologies (and are therefore rare in the human population) are nonetheless well-
established (with no pathogenic effects) in other mammalian species (Kondrashov
et al. 2002; Gao and Zhang 2003). Very similar observations have been made with
mutations known to be pathogenic in Drosophila, but established in other insect
species (Kulathinal et al. 2004). Thus, the effects of such mutations must be con-
text dependent. Moreover, as the frequency of such compensated deviations does
not increase with the evolutionary distance of a lineage, this suggests that they
accrue relatively rapidly, rather than awaiting long-term protein remodeling.

Finally, it has been noted that amino-acid changes in proteins tend to be clus-
tered within a sequence, generally on a chain-length scale of < 10 residues, and also
tend to preserve the local charge of the protein (Callahan et al. 2011). The average
physical distance between central carbon atoms of amino acids in folded proteins
plateaus at chain distances than > 10 residues, implying that on average residues
separated by < 10 positions have a high likelihood of physical interaction. The
fact that silent-site substitutions are not clustered argues against the pattern being
a result of regional mutational hot spots. Additional work shows that long-range
epistatic interactions are not uncommon (Sharir-Ivry and Xia 2018).

A General Model for Protein Evolution

A key point emerging from the previous discussion is that, more often than not, many
cumulative amino-acid changes have little impact on the immediate functionality
of a gene. Rather, much of protein evolution appears to reflect little more than
a restricted random walk down nearly-neutral pathways (Figure 12.12). Some of
these pathways may involve the fixation of effectively neutral but slightly deleterious
mutations, which then allow the fixation of a compensatory mutation that was
insignificantly favorable (or even deleterious) on the prior ancestral background
but now more favorable in its new context. Such compensatory changes are not
necessarily epistatic with respect to the long-term enhancement of total fitness,
although they are epistatic with respect to the physical structure of the protein.

Thus, an emerging view of protein-sequence evolution is that at any point in
time the number of degrees of freedom for change at individual amino-acid sites
is small, with identities of exhangeable amino acids shifting with fortuitous prior
fixations elsewhere in the molecule (Goldstein and Pollock 2017). In part, such
restricted sequence walks are governed by the nature of the genetic code, by which
single mutations at each replacement nucleotide site can generate at most three
alternative amino acids. More generally, however, the structural environment of the
protein itself will dictate the subset of permissible (effectively neutral) amino-acid
exchanges. Over time, slight shifts in the amino-acid constitution of the protein, each
nearly neutral incrementally, alter the local protein-structural environment, further
restricting the degrees of freedom for future changes, but in a progressively divergent
way, allowing the long-term degrees of freedom for change at a large fraction of sites
to wander to levels as high as 19.

Such cycles of modification of the background environment, and subsequent
channeling of permissible mutations allows for an expansive set of paths open to
evolutionary change across the Tree of Life, while rendering individual lineages vic-
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tims of historical contingency. Under this model, because slightly deleterious muta-
tions can sometimes fix, such events also pave the way for the subsequent fixation of
compensatory beneficial mutations without significant consequences for long-term
adaptation in terms of protein function. Moreover, by this process, amino-acid
changes that were originally effectively neutral may become entrenched to the point
of being essential to protein functionality and hence nearly irreversible evolutionar-
ily.

Summary

• Proteins consist of chains of amino acids, which generally fold into subunits, such
as helices and sheets, that further arrange into tertiary structures essential for
function.

• At the dawn of the protein world, only a fraction of the twenty amino acids used in
today’s organisms would have been in play, and other noncanonical amino acids
might have been used. Nonetheless, enormous functional diversity of proteins
can still be generated by a reduced amino-acid alphabet, although an expanded
vocabulary allows for further refinement in catalytic activity and efficiency.

• One of the major challenges of proteins is their initial need to fold into three-
dimensional structures essential for functionality. Although there are a number
of important substructural influences, folding rates are largely determined by the
amino-acid chain length, and those in excess of ∼ 250 residues are incapable of
folding on their own on reasonable time scales.

• Despite their high level of refinement, the functionality of proteins has not reached
the limits set by biophysics. Catalytic rates can be improved by the use of non-
canonical amino acids, and folding rates and stability are also less than their
maximum possible values, and potentially more so in eukaryotes than prokary-
otes. These observations suggest that the efficiency of natural selection is stalled
by either a drift barrier and/or constraints imposed by the restricted set of canon-
ical amino acids.

• Based on phylogenetic comparisons of sequence data, only 5 to 25% of amino-acid
altering mutations are acceptable in nature, although experimental substitutions
of random amino acids consistently indicate that much larger fractions do not
entirely eliminate protein function. The distribution of fitness effects associated
with amino-acid exchanges generally has a mode not significantly different from
zero, a long tail towards deleterious effects, and only a small tail containing
favorable changes. The overall conclusion is that the majority of mutations at
the protein level are mildly deleterious. However, the details of the distribution
in the range of very small effects, which is most critical to evolutionary theory,
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remains uncertain.

• One of the primary determinants of the rate of evolution of a protein is its level of
expression. This is thought to be a consequence of strong purifying selection for
the maintenance of folding stability to avoid the production of wasted or harmful
by-products and/or selection for surface residues to avoid misinteractions with
other key proteins.

• Mutation bias, usually in the direction of A and T nucleotides, varies widely
among phylogenetic lineages, and via the structure of the genetic code, this can
sometimes drive the biased deployment of particular amino acids in the pro-
teome, leading to parallel evolution in different lineages with little involvement
of selection.

• Amino-acid altering mutations frequently have context-dependent fitness effects,
whereby the incorporation of earlier mutations can dictate whether specific sub-
sequent substitutions are deleterious, beneficial, or effectively neutral. As a con-
sequence, the fixation of effectively neutral (but mildly deleterious) mutations
can pave the way for the future fixation of compensatory mutations that other-
wise would not be beneficial. Over time, a series of such subtle remodeling events
can lead to the entrenchment of previously neutral amino-acid substitutions to
the point of becoming near essential to protein functionality. Moreover, although
such progressive changes may appear to lead to adaptive fixations, the entire pro-
cess may unfold with only minor consequences for overall fitness. This view of
protein evolution is entirely compatible with long-term wandering of amino-acid
sequences along the drift barrier.
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Tóth-Petróczy, A., and D. S. Tawfik. 2011. Slow protein evolutionary rates are dictated by surface-

core association. Proc. Natl. Acad. Sci. USA 108: 11151-11156.

van den Berg, P. A., A. van Hoek, C. D. Walentas, R. N. Perham, and A. J. Visser. 1998. Flavin

fluorescence dynamics and photoinduced electron transfer in Escherichia coli glutathione reduc-

tase. Biophys. J. 74: 2046-2058.

Venev, S. V., and K. B. Zeldovich. 2018. Thermophilic adaptation in prokaryotes is constrained

by metabolic costs of proteostasis. Mol. Biol. Evol. 35: 211-224.

Vieira-Silva, S., M. Touchon, S. S. Abby, and E. P. Rocha. 2011. Investment in rapid growth shapes

the evolutionary rates of essential proteins. Proc. Natl. Acad. Sci. USA 108: 20030-20035.

Wagner, A. 2005. Energy constraints on the evolution of gene expression. Mol. Biol. Evol. 22:

1365-1374.

Walter, K. U., K. Vamvaca, and D. Hilvert. 2005. An active enzyme constructed from a 9-amino

acid alphabet. J. Biol. Chem. 280: 37742-37746.

Wang, M., C. G. Kurland, and G. Caetano-Anollés. 2011. Reductive evolution of proteomes and

protein structures. Proc. Natl. Acad. Sci. USA 108: 11954-11958.

Weber, C. C., and S. Whelan. 2019. Physicochemical amino acid properties better describe sub-

stitution rates in large populations. Mol. Biol. Evol. 36: 679-690.

Wells, J. A. 1990. Additivity of mutational effects in proteins. Biochemistry 29: 8509-8517.

Wendler, K., J. Thar, S. Zahn, and B. Kirchner. 2010. Estimating the hydrogen bond energy. J.

Phys. Chem. A. 114: 9529-9536.

Wheelan, S. J., A. Marchler-Bauer, and S. H. Bryant. 2000. Domain size distributions can predict

domain boundaries. Bioinformatics 16: 613-618.

Windle, C. L., K. J. Simmons, J. R. Ault, C. H. Trinh, A. Nelson, A. R. Pearson, and A. Berry.

2017. Extending enzyme molecular recognition with an expanded amino acid alphabet. Proc.

Natl. Acad. Sci. USA 114: 2610-2615.

Wolfenden, R., C. A. Lewis, Jr., Y. Yuan, and C. W. Carter, Jr. 2015. Temperature dependence

of amino acid hydrophobicities. Proc. Natl. Acad. Sci. USA 112: 7484-7488.

Wolynes, P. G. 2015. Evolution, energy landscapes and the paradoxes of protein folding. Biochimie

119: 218-230.

Worth, C. L., and T. L. Blundell. 2009. Satisfaction of hydrogen-bonding potential influences the

conservation of polar side chains. Proteins 75: 413-429.

Worth, C. L., and T. L. Blundell. 2010. On the evolutionary conservation of hydrogen bonds made

by buried polar amino acids: the hidden joists, braces and trusses of protein architecture. BMC

Evol. Biol. 10: 161.

Wright, C. F., S. A. Teichmann, J. Clarke, and C. M. Dobson. 2005. The importance of sequence

diversity in the aggregation and evolution of proteins. Nature 438: 878-881.

Wylie, C. S., and E. I. Shakhnovich. 2011. A biophysical protein folding model accounts for most

mutational fitness effects in viruses. Proc. Natl. Acad. Sci. USA 108: 9916-9921.

Yampolsky, L. Y., and A. Stoltzfus. 2005. The exchangeability of amino acids in proteins. Genetics

170: 1459-1472.



THE PROTEIN WORLD 31

Yang, J. R., B. Y. Liao, S. M. Zhuang, and J. Zhang. 2012. Protein misinteraction avoidance

causes highly expressed proteins to evolve slowly. Proc. Natl. Acad. Sci. USA 109: E831-E840.

Yang, J. R., S. M. Zhuang, and J. Zhang. 2010. Impact of translational error-induced and error-free

misfolding on the rate of protein evolution. Mol. Syst. Biol. 6: 421.

Yang, Z. 2014. Molecular Evolution: a Statistical Approach. Oxford Univ. Press, Oxford, UK.

Yeh, S. W., J. W. Liu, S. H. Yu, C. H. Shih, J. K. Hwang, and J. Echave. 2014. Site-specific

structural constraints on protein sequence evolutionary divergence: local packing density versus

solvent exposure. Mol. Biol. Evol. 31: 135-139.

Zana, R. 1975. On the rate-determining step for helix propagation in the helix-coil transition of

polypeptides in solution. Biopolymers 14: 2425-2428.

Zeldovich, K. B., P. Chen, and E. I. Shakhnovich. 2007. Protein stability imposes limits on organism

complexity and speed of molecular evolution. Proc. Natl. Acad. Sci. USA 104: 16152-16157.

Zhang, J., and S. Kumar. 1997. Detection of convergent and parallel evolution at the amino acid

sequence level. Mol. Biol. Evol. 14: 527-536.

Zhang, J., S. Maslov, and E. I. Shakhnovich. 2008. Constraints imposed by non-functional protein-

protein interactions on gene expression and proteome size. Mol. Syst. Biol. 4: 210.

Zhang, J., and J. R. Yang. 2015. Determinants of the rate of protein sequence evolution. Nat.

Rev. Genet. 16: 409-420.

Zhang, X. J., W. A. Baase, B. K. Shoichet, K. P. Wilson, and B. W. Matthews. 1995. Enhancement

of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein

Eng. 8: 1017-1022.

Zhang, Y., I. A. Hubner, A. K. Arakaki, E. Shakhnovich, and J. Skolnick. 2006. On the origin and

highly likely completeness of single-domain protein structures. Proc. Natl. Acad. Sci. USA 103:

2605-2610.

Zhao, J., A. J. Burke, and A. P. Green. 2020. Enzymes with noncanonical amino acids. Curr.

Opin. Chem. Biol. 55: 136-144.

Zou, Z., and J. Zhang. 2015. Are convergent and parallel amino acid substitutions in protein

evolution more prevalent than neutral expectations? Mol. Biol. Evol. 32: 2085-2096.



 

 

 

  

NITROGEN-
CONTAINING 

HYDROPHOB
IC 



 

 

 

 

   



 

 

 

 

 

  



   



  



 

 

  

Mean Phenotype

0 50 100 150 200

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 /

 F
it
n
e
s
s

0.0

0.2

0.4

0.6

0.8

1.0

10
3

10
4

10
5

10
6



 

 

  



   



  



  



 

 

   



 

 

 


